Global texture in Lyra geometry

被引:0
|
作者
Rahaman, F [1 ]
机构
[1] Khodar Bozar, Baruipur 743302, W Bengal, India
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider global texture with time-dependent displacement vector based on Lyra geometry in normal gauge, i.e. the displacement vector phi(i)* = (beta(t), 0, 0, 0). We investigate the gravitational field of global texture configuration by solving Einstein equations as well as that for the scalar field due to texture.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [21] String Cosmological Models in Lyra Geometry
    Singh, J. K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (03) : 905 - 912
  • [22] Local cosmic string in Lyra geometry
    Rahaman, F.
    Mal, S.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 302 (1-4) : 3 - 5
  • [23] Local Cosmic string in Lyra geometry
    F. Rahaman
    S. Mal
    Astrophysics and Space Science, 2006, 302 : 3 - 5
  • [24] Inhomogeneous cosmological model in Lyra geometry
    Rahaman, F
    Chakraborty, S
    Bera, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (09): : 1501 - 1504
  • [25] Thin Domain Walls in Lyra Geometry
    F. Rahaman
    M. Kalam
    R. Mondal
    Astrophysics and Space Science, 2006, 305 : 337 - 340
  • [26] String Cosmological Models in Lyra Geometry
    J. K. Singh
    International Journal of Theoretical Physics, 2009, 48 : 905 - 912
  • [27] Thin domain walls in Lyra Geometry
    Rahaman, F.
    Kalam, M.
    Mondal, R.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (04) : 337 - 340
  • [28] Vacuumless topological defects in Lyra geometry
    F. Rahaman
    S. Mal
    M. Kalam
    Astrophysics and Space Science, 2009, 319 : 169 - 175
  • [29] Vacuumless topological defects in Lyra geometry
    Rahaman, F.
    Mal, S.
    Kalam, M.
    ASTROPHYSICS AND SPACE SCIENCE, 2009, 319 (2-4) : 169 - 175
  • [30] The constrained cosmological model in Lyra geometry
    Singh, J. K.
    Shaily
    Ram, Shri
    Santos, Joao R. L.
    Fortunato, Jeferson A. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2023, 32 (07):