Bayesian nonparametric estimation of the probability of discovering new species

被引:96
|
作者
Lijoi, Antonio [1 ]
Mena, Ramses H. [2 ]
Prunster, Igor [3 ]
机构
[1] Univ Pavia, Dipartimento Econ Polit & Metodi Quantitat, Via Palestro 3, I-27100 Pavia, Italy
[2] Univ Nacl Autonoma Mexico, Dept Probabilidad & Estadist, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
[3] Univ Turin, Dipartimento Stat & Matemat Applicata, I-10122 Turin, Italy
关键词
Bayesian nonparametrics; Gibbs-type random partition; posterior probability of discovering a new species; sample coverage; species sampling;
D O I
10.1093/biomet/asm061
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of evaluating the probability of discovering a certain number of new species in a new sample of population units, conditional on the number of species recorded in a basic sample. We use a Bayesian nonparametric approach. The different species proportions are assumed to be random and the observations from the population exchangeable. We provide a Bayesian estimator, under quadratic loss, for the probability of discovering new species which can be compared with well-known frequentist estimators. The results we obtain are illustrated through a numerical example and an application to a genomic dataset concerning the discovery of new genes by sequencing additional single-read sequences of cDNA fragments.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 50 条
  • [41] Asymptotics for a Bayesian nonparametric estimator of species variety
    Favaro, Stefano
    Lijoi, Antonio
    Pruenster, Igor
    [J]. BERNOULLI, 2012, 18 (04) : 1267 - 1283
  • [42] Bayesian Estimation of the Fatigue Failure Probability
    N. A. Makhutov
    D. O. Reznikov
    [J]. Russian Metallurgy (Metally), 2022, 2022 : 293 - 299
  • [43] Bayesian Estimation of the Fatigue Failure Probability
    Makhutov, N. A.
    Reznikov, D. O.
    [J]. RUSSIAN METALLURGY, 2022, 2022 (04): : 293 - 299
  • [44] Objective Bayesian estimation of the probability of default
    Kazianka, Hannes
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (01) : 1 - 27
  • [45] Bayesian nonparametric variable selection as an exploratory tool for discovering differentially expressed genes
    Shahbaba, Babak
    Johnson, Wesley O.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (12) : 2114 - 2126
  • [46] BAYESIAN NONPARAMETRIC METHODS FOR DISCOVERING LATENT STRUCTURES OF RAT HIPPOCAMPAL ENSEMBLE SPIKES
    Chen, Zhe
    Linderman, Scott W.
    Wilson, Matthew A.
    [J]. 2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [47] A New Bayesian Nonparametric Mixture Model
    Fuentes-Garcia, R.
    Mena, R. H.
    Walker, S. G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 669 - 682
  • [48] MATLAB tool for probability density assessment and nonparametric estimation
    Farmer, Jenny
    Jacobs, Donald J.
    [J]. SOFTWAREX, 2022, 18
  • [49] Nonparametric Estimation of the Quadratic Functional of a Multimodal Probability Density
    Lapko, A. V.
    Lapko, V. A.
    [J]. MEASUREMENT TECHNIQUES, 2019, 62 (09) : 769 - 775
  • [50] Nonparametric Estimation of the Quadratic Functional of a Multimodal Probability Density
    A. V. Lapko
    V. A. Lapko
    [J]. Measurement Techniques, 2019, 62 : 769 - 775