Conformally invariant quantization at order three

被引:9
|
作者
Djounga, SEL [1 ]
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
关键词
conformal structures; modules of differential operators; quantization;
D O I
10.1023/A:1025751120672
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let (M, g) be a pseudo-Riemannian manifold and F-lambda(M) the space of densities of degree lambda on M. Denote D-lambda,mu(k)(M) the space of differential operators from F-lambda(M) to F-mu(M) of order k and S-delta(k) with delta = mu - lambda the corresponding space of symbols. We construct (the unique) conformally invariant quantization map Q(lambda,mu)(3) : S-delta(3) --> D-lambda,mu(3). This result generalizes that of Duval and Ovsienko.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
  • [21] Second-Order Conformally Equivariant Quantization in Dimension 1|2
    Mellouli, Najla
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [22] Formula for the projectively invariant quantization on degree three
    Bouarroudj, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (04): : 343 - 346
  • [23] CONFORMALLY INVARIANT FIELDS IN CONFORMALLY FLAT SPACETIME
    VANDENBERGH, N
    GUNZIG, E
    NARDONE, P
    CASTAGNINO, MA
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (12) : 2267 - 2283
  • [24] QUALITATIVE PROPERTIES FOR SOLUTIONS TO CONFORMALLY INVARIANT FOURTH ORDER CRITICAL SYSTEMS
    Andrade, Joao Henrique
    Do, Joao Marcos O.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (08) : 3008 - 3042
  • [25] Invariant classification of second-order conformally flat superintegrable systems
    Capel, J. J.
    Kress, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (49)
  • [26] Construction of Arbitrary Order Conformally Invariant Operators in Higher Spin Spaces
    Chao Ding
    Raymond Walter
    John Ryan
    The Journal of Geometric Analysis, 2017, 27 : 2418 - 2452
  • [27] Construction of Arbitrary Order Conformally Invariant Operators in Higher Spin Spaces
    Ding, Chao
    Walter, Raymond
    Ryan, John
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (03) : 2418 - 2452
  • [28] Conformally Invariant Inequalities
    Avkhadiev F.G.
    Journal of Mathematical Sciences, 2019, 241 (6) : 672 - 685
  • [29] Classification of Solutions for Mixed Order Conformally Invariant Systems Involving Fractional LaplacianClassification of Solutions for Mixed Order Conformally Invariant Systems...R. Kong et al.
    Ruixue Kong
    Miaomiao Niu
    Heming Wang
    Xiaohui Zhou
    The Journal of Geometric Analysis, 2025, 35 (3):
  • [30] THE BACKREACTION FOR CONFORMALLY INVARIANT FIELDS ON A CONFORMALLY FLAT BACKGROUND
    VANDENBERGH, N
    GUNZIG, E
    NARDONE, P
    CASTAGNINO, M
    GENERAL RELATIVITY AND GRAVITATION, 1991, 23 (02) : 209 - 217