A membraneless microfluidic fuel cell stack

被引:62
|
作者
Salloum, Kamil S. [1 ]
Posner, Jonathan D. [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
关键词
Microfluidic fuel cell; Membraneless fuel cell; Flow battery; Fuel utilization; Reactant recycling; Stacked fuel cell; PROTON-EXCHANGE MEMBRANE; HYDROGEN; METHANOL; DEGRADATION; PERFORMANCE; CROSSOVER; SILICON; DURABILITY; ALKALINE; PLANAR;
D O I
10.1016/j.jpowsour.2010.08.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A membraneless microfluidic fuel cell stack architecture is presented that reuses reactants from one cell to a subsequent one, analogous to PEMFC stacks. On-chip reactant reuse improves fuel utilization and power densities relative to single cells. The reactants flow separately through porus electrodes and interface with a non-reacting and conductive electrolyte which maintains their separation. The reactants remain separated downstream of the interface and are used in subsequent downstream cells. This fuel cell uses porous carbon for electrocatalysts and vanadium redox species as reactants with a sulfuric acid supporting electrolyte. The overall power density of the fuel cell increases with reactant flow rate and decreasing the separating electrolyte flow rate. The peak power, maximum fuel utilization, and efficiency nearly double when electrically connecting the cells in parallel. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1229 / 1234
页数:6
相关论文
共 50 条
  • [31] A Development of Ethanol/Percarbonate Membraneless Fuel Cell
    Priya, M.
    Arun, A.
    Elumalai, M.
    Kiruthika, S.
    Muthukumaran, B.
    ADVANCES IN PHYSICAL CHEMISTRY, 2014,
  • [32] Influence of fuel and media on membraneless sodium percarbonate fuel cell
    Ponmani, K.
    Durga, S.
    Gowdhamamoorthi, M.
    Kiruthika, S.
    Muthukumaran, B.
    IONICS, 2014, 20 (11) : 1579 - 1589
  • [33] Membraneless fuel cell based on laminar flow
    Choban, ER
    Waszczuk, P
    Markoski, LJ
    Wieckowski, A
    Kenis, PJA
    FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, 2003, : 261 - 265
  • [34] Influence of fuel and media on membraneless sodium percarbonate fuel cell
    K. Ponmani
    S. Durga
    M. Gowdhamamoorthi
    S. Kiruthika
    B. Muthukumaran
    Ionics, 2014, 20 : 1579 - 1589
  • [35] Two-phase computational modelling of a membraneless microfluidic fuel cell with a flow-through porous anode
    Wang, Hao-Nan
    Zhu, Xun
    Zhang, Biao
    Ye, Ding-Ding
    Chen, Rong
    Liao, Qiang
    Sui, Pang-Chieh
    Djilali, Ned
    JOURNAL OF POWER SOURCES, 2019, 420 : 88 - 98
  • [36] Microfluidic membraneless microbial fuel cells: new protocols for record power densities
    Khodaparastasgarabad, Nastaran
    Sonawane, Jayesh M.
    Baghernavehsi, Haleh
    Gong, Lingling
    Liu, Linlin
    Greener, Jesse
    LAB ON A CHIP, 2023, 23 (19) : 4201 - 4212
  • [37] From waste to watts in micro-devices: Review on development of Membraned and Membraneless Microfluidic Microbial Fuel Cell
    Goel, Sanket
    APPLIED MATERIALS TODAY, 2018, 11 : 270 - 279
  • [38] A dual-functional three-dimensional herringbone-like electrode for a membraneless microfluidic fuel cell
    Liu, Zhenfei
    Ye, Dingding
    Chen, Rong
    Zhang, Biao
    Zhu, Xun
    Liao, Qiang
    JOURNAL OF POWER SOURCES, 2019, 438
  • [39] A laser-micromachined polymeric membraneless fuel cell
    Li, Aidan
    Chan, Siew Hwa
    Nguyen, Nam-Trung
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (06) : 1107 - 1113
  • [40] Optimal Design of Membraneless Microfluidic Fuel Cell with Double-Bridge Flow-Channel Cross-Section
    Oh, Ji-Hyun
    Vuong, Tien-Dung
    Kim, Kwang-Yong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2022, 46 (05) : 275 - 284