Regional-scale vegetation-climate interactions on the Qinghai-Tibet Plateau

被引:43
|
作者
Diao, Chan [1 ,2 ,3 ,4 ]
Liu, Yu [1 ,5 ]
Zhao, Liang [6 ,7 ]
Zhuo, Ga [8 ]
Zhang, Yongqing [4 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resources Ecol, Beijing 100875, Peoples R China
[4] Shanxi Normal Univ, Coll Geog Sci, Linfen 041000, Shanxi, Peoples R China
[5] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[6] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[7] Beijing Normal Univ, Fac Geog Sci, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China
[8] Tibet Inst Plateau Atmospher & Environm Sci, Lasa 850100, Peoples R China
关键词
Vegetation dynamics; Climatic change; Cumulative effect; Time-lag effect; GROWING-SEASON; SOIL-MOISTURE; GREEN-UP; CHINA; TERRESTRIAL; PRECIPITATION; FEEDBACKS; WATER; NDVI; IMPACT;
D O I
10.1016/j.ecoinf.2021.101413
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Response and feedback of vegetation growth to climate change are a series biogeophysical processes from local to regional scales. Revealing the vegetation-climate interaction is fundamental to understand the evolution of earth surface system in the context of global climate change. Due to the low temperature and vulnerable biotic and abiotic settings, the alpine ecosystems are sensitive to climate change, peculiarly in the Qinghai-Tibet Plateau (QTP). By combining the climate factors (precipitation and temperature) and vegetation state indicated by the Enhanced Vegetation Index (EVI) data we try to reveal the pertinent temporal reaction mode of vegetation to climate change on the QTP. The vegetation-climate interactions were investigated by using the Granger causality test technique. The prime findings of this study are: (1) vegetation showed a strong sensitivity to warmingwetting climate in most arid and semi-arid areas of the QTP; (2) the reaction patterns of EVI to precipitation show a temporal lag of 0-1 months, which was strongest to the cumulative precipitation within 1-2 months; (3) The time lag effect and cumulative effect of temperature on vegetation both occurred within 1 to 2 months; (4) The unidirectional Granger causes of precipitation and temperature to vegetation accounted for 17.65% and 8.66% of the entire QTP, respectively. This study emphasizes a sensitive response of the vegetation to climate change (precipitation and temperature) in the QTP. Vegetation feedback makes the fluctuations and effects of climate more complicated. The results indicated that more insights into the future forecasting of climate change and vegetation dynamics can be acquired by a specific and comprehensive analysis of vegetation-climate coupled feedback.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau
    Decheng Zhou
    Lu Hao
    John B. Kim
    Peilong Liu
    Cen Pan
    Yongqiang Liu
    Ge Sun
    Climatic Change, 2019, 156 : 31 - 50
  • [42] Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau
    Dai, Licong
    Ke, Xun
    Guo, Xiaowei
    Du, Yangong
    Zhang, Fawei
    Li, Yikang
    Li, Qian
    Lin, Li
    Peng, Cuoji
    Shu, Kai
    Cao, Guangmin
    ECOLOGY AND EVOLUTION, 2019, 9 (10): : 6105 - 6115
  • [44] A Mechanism for the Building of the Qinghai-Tibet Plateau
    BAI Wenji
    YANG Jingsui
    SHI Rendeng (Institute of Geology
    Continental Dynamics, 1999, (02) : 39 - 49
  • [46] Tectonic evolution of the Qinghai-Tibet Plateau
    Pan, Guitang
    Wang, Liquan
    Li, Rongshe
    Yuan, Sihua
    Ji, Wenhua
    Yin, Fuguang
    Zhang, Wanping
    Wang, Baodi
    JOURNAL OF ASIAN EARTH SCIENCES, 2012, 53 : 3 - 14
  • [47] Denisovan from Qinghai-Tibet Plateau
    SONG Jianlan
    Bulletin of the Chinese Academy of Sciences, 2020, 34 (01) : 14 - 15
  • [48] Gravity inversion in Qinghai-Tibet plateau
    Braitenberg, C
    Zadro, M
    Fang, J
    Wang, Y
    Hsu, HT
    PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 2000, 25 (04): : 381 - 386
  • [49] Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau
    Lu, Qing
    Zhao, Dongsheng
    Wu, Shaohong
    SCIENTIFIC REPORTS, 2017, 7
  • [50] The Impact of Climate Change on the Surface Albedo over the Qinghai-Tibet Plateau
    Chen, Chaonan
    Tian, Li
    Zhu, Lianqi
    Zhou, Yuanke
    REMOTE SENSING, 2021, 13 (12)