Gradient Ti-doping in hematite photoanodes for enhanced photoelectrochemical performance

被引:43
|
作者
Feng, Fan [1 ]
Li, Can [1 ]
Jian, Jie [2 ,3 ]
Li, Fan [2 ,3 ]
Xu, Youxun [2 ,3 ]
Wang, Hongqiang [2 ,3 ]
Jia, Lichao [1 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Key Lab Adv Energy Devices, Key Lab Appl Surface & Colloid Chem,Natl Minist E, Shaanxi Engn Lab Adv Energy Technol,Sch Mat Sci &, 620 West Changan St, Xian 710119, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, Ctr Nano Energy Mat, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[3] Shaanxi Joint Lab Graphene, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Charge separation; Gradient doping; Photoanode; Fe2O3; Water splitting; CHARGE SEPARATION; NANOROD ARRAYS; WATER; LAYER; HETEROJUNCTION; PASSIVATION; EXTINCTION; CATALYSTS; FILMS;
D O I
10.1016/j.jpowsour.2019.227473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite based photoanode is promising for solar water splitting while suffers from poor charge transport and separation efficiency that limit its practical application. Herein, we demonstrate two types gradient Ti-doped Fe2O3 photoanodes (Fe2O3 -Ti (TiO2 deposited on the top of Fe2O3) and Ti-Fe2O3 (Fe2O3 on the top of TiO2)) to enhance charge transport and separation efficiency. Interestingly, Fe2O3-Ti and Ti-Fe2O3 photoanodes exhibit almost identical PEC performance with photocurrent of 1.50 mA cm(-2) at 1.23 V vs. the reversible hydrogen electrode (RHE). However, the onset potential of Ti-Fe2O3 photoanode displays a cathodic shift of 80 mV comparing with that of Fe2O3-Ti photoanode. Moreover, the charge separation efficiencies on the surface (eta(surface)) for Fe2O3=-Ti and Ti-Fe2O3 can reach up to 96% at the higher potential range from 1.30 to 1.50 V vs. RHE, which are among the top values in the record of hematite-based photoanodes without co-cocatalyst. Further investigation demonstrates the forming of gradient Ti doping is not dependent on the location of the TiO2 layer, but mainly affected by the high annealing temperature. The enlarged contact area between hematite photoanode and the electrolyte, the improved charge separation efficiency, and increased charge carrier density are responsible for the enhanced PEC water splitting.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes
    Shen, Shaohua
    Jiang, Jiangang
    Guo, Penghui
    Kronawitter, Coleman X.
    Mao, Samuel S.
    Guo, Liejin
    [J]. NANO ENERGY, 2012, 1 (05) : 732 - 741
  • [2] In Situ Photoelectrodeposited Polyaniline on Ti-Doping Hematite For Highly Selective Photoelectrochemical Oxygen Demand Determination
    Li, Jieyu
    Tang, Tongxin
    Xiao, Yushen
    Zou, Wenhao
    Chen, Junwei
    Ge, Sitong
    Wu, Beibei
    Li, Lei
    Li, Meng
    Lin, Zhan
    Ye, Kai-Hang
    Zhang, Shanqing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [3] Plasma-implanted Ti-doped hematite photoanodes with enhanced photoelectrochemical water oxidation performance
    Peng, Yong
    Ruan, Qingdong
    Lam, Chun Ho
    Meng, Fanxu
    Guan, Chung-Yu
    Santoso, Shella Permatasari
    Zou, Xingli
    Yu, Edward T.
    Chu, Paul K.
    Hsu, Hsien-Yi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870 (870)
  • [4] Combining Mesoporosity and Ti-Doping in Hematite Films for Water Splitting
    Toussaint, Caroline
    Hoang Long Le Tran
    Colson, Pierre
    Dewalque, Jennifer
    Vertruyen, Benedicte
    Gilbert, Bernard
    Ngoc Duy Nguyen
    Cloots, Rudi
    Henrist, Catherine
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (04): : 1642 - 1650
  • [5] Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation
    Franking, Ryan
    Li, Linsen
    Lukowski, Mark A.
    Meng, Fei
    Tan, Yizheng
    Hamers, Robert J.
    Jin, Song
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) : 500 - 512
  • [6] Surface Modification of Hematite Photoanodes for Improvement of Photoelectrochemical Performance
    Xi, Lifei
    Lange, Kathrin M.
    [J]. CATALYSTS, 2018, 8 (11):
  • [7] Enhanced photoelectrochemical water splitting performance of hematite photoanodes by hybrid microwave annealing process
    Ramachandran, K.
    Geerthana, M.
    Maadeswaran, P.
    Liang, B.
    Ramesh, R.
    [J]. OPTIK, 2020, 212
  • [8] Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes
    Cao, Xiaohu
    Wang, Yifan
    Lin, Junqi
    Ding, Yong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (11) : 6294 - 6303
  • [9] Photoelectrochemical water oxidation and methylene blue degradation enhanced by Nb doping and CoPi modification for hematite photoanodes
    Liu, Qiang
    Chen, Changlong
    Wei, Yuling
    Jiang, Liya
    Wang, Li
    Li, Guobao
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [10] Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting
    Peerakiatkhajohn, Piangjai
    Yun, Jung-Ho
    Chen, Hongjun
    Lyu, Miaoqiang
    Butburee, Teera
    Wang, Lianzhou
    [J]. ADVANCED MATERIALS, 2016, 28 (30) : 6405 - +