Syntax-Directed Hybrid Attention Network for Aspect-Level Sentiment Analysis

被引:14
|
作者
Wang, Xinyi [1 ,2 ,3 ]
Xu, Guangluan [1 ,3 ]
Zhang, Jingyuan [1 ,2 ,3 ]
Sun, Xian [1 ,3 ]
Wang, Lei [1 ,3 ]
Huang, Tingle [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Elect, Suzhou 215123, Peoples R China
关键词
Aspect-level sentiment analysis; hybrid attention; syntactic information; gating mechanism;
D O I
10.1109/ACCESS.2018.2885032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aspect-level sentiment analysis is a fine-grained task in sentiment analysis that aims at detecting sentiment polarity towards a specific target in a sentence. Previous studies focus on using global attention mechanism that attends to all words in the context to model the interaction between target and sentence. However, global attention suffers from assigning high-attention score to irrelevant sentiment words in the cases where sentence contains noisy words or multiple targets. To address this problem, we propose a novel syntax-directed hybrid attention network (SHAN). In SHAN, a global attention is employed to capture coarse information about the target, and a syntax-directed local attention is used to take a look at words syntactically close to the target. An information gate is then utilized to synthesize the information from local and global attention results and adaptively generate a less-noisy and more sentiment-oriented representation. The experimental results on SemEval 2014 Datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:5014 / 5025
页数:12
相关论文
共 50 条
  • [21] Aspect-Level Sentiment Analysis Based on Self-Attention and Graph Convolutional Network
    Chen K.
    Huang C.
    Lin H.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (01): : 127 - 132
  • [22] Triple-channel graph attention network for improving aspect-level sentiment analysis
    Zhu, Chao
    Yi, Benshun
    Luo, Laigan
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (06): : 7604 - 7623
  • [23] Triple-channel graph attention network for improving aspect-level sentiment analysis
    Chao Zhu
    Benshun Yi
    Laigan Luo
    The Journal of Supercomputing, 2024, 80 : 7604 - 7623
  • [24] Multi-grained Attention Network for Aspect-Level Sentiment Classification
    Fan, Feifan
    Feng, Yansong
    Zhao, Dongyan
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3433 - 3442
  • [25] Aspect-level sentiment analysis using context and aspect memory network
    Lv, Yanxia
    Wei, Fangna
    Cao, Lihong
    Peng, Sancheng
    Niu, Jianwei
    Yu, Shui
    Wang, Cuirong
    NEUROCOMPUTING, 2021, 428 : 195 - 205
  • [26] Aspect-level sentiment classification based on location and hybrid multi attention mechanism
    Yuchen Wu
    Weijiang Li
    Applied Intelligence, 2022, 52 : 11539 - 11554
  • [27] Syntactic and semantic analysis network for aspect-level sentiment classification
    Dianyuan Zhang
    Zhenfang Zhu
    Shiyong Kang
    Guangyuan Zhang
    Peiyu Liu
    Applied Intelligence, 2021, 51 : 6136 - 6147
  • [28] Syntactic and semantic analysis network for aspect-level sentiment classification
    Zhang, Dianyuan
    Zhu, Zhenfang
    Kang, Shiyong
    Zhang, Guangyuan
    Liu, Peiyu
    APPLIED INTELLIGENCE, 2021, 51 (08) : 6136 - 6147
  • [29] Aspect-level sentiment classification based on location and hybrid multi attention mechanism
    Wu, Yuchen
    Li, Weijiang
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11539 - 11554
  • [30] Deep Interactive Memory Network for Aspect-Level Sentiment Analysis
    Sun, Chengai
    Lv, Liangyu
    Tian, Gang
    Liu, Tailu
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (01)