Approximation of operator eigenvalue problems in a Hilbert space

被引:1
|
作者
Solovyev, S. I. [1 ]
机构
[1] Kazan Volga Reg Fed Univ, Inst Computat Math & Informat Technol, Dept Computat Math, 35 Kremlevskaya St, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
FINITE-ELEMENT APPROXIMATIONS; SYMMETRIC SPECTRAL PROBLEMS; BUBNOV-GALERKIN METHOD; SUPERCONVERGENCE; PERTURBATIONS; COMPUTATION; ERROR;
D O I
10.1088/1757-899X/158/1/012087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The eigenvalue problem for a compact symmetric positive definite operator in an infinite-dimensional Hilbert space is approximated by an operator eigenvalue problem in finitedimensional subspace. Error estimates for the approximate eigenvalues and eigenelements are established. These results can be applied for investigating the finite element method with numerical integration for differential eigenvalue problems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] INVERSION OF OPERATOR PENCILS ON HILBERT SPACE
    Albrecht, Amie
    Howlett, Phil
    Verma, Geetika
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) : 145 - 176
  • [32] Factorization of operator functions in a Hilbert space
    Gomilko, AM
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2003, 37 (01) : 16 - 20
  • [33] WEYL SPECTRUM OF A HILBERT SPACE OPERATOR
    BAXLEY, JV
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A398 - A398
  • [34] On the operator space structure of Hilbert spaces
    Bunce, Leslie J.
    Timoney, Richard M.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1205 - 1218
  • [35] ON UNITARY PART OF AN OPERATOR ON HILBERT SPACE
    DURSZT, E
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1970, 31 (1-2): : 87 - &
  • [36] Double operator integrals in a Hilbert space
    Birman, MS
    Solomyak, M
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (02) : 131 - 168
  • [37] SHELL OF A HILBERT-SPACE OPERATOR
    DAVIS, C
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1968, 29 (1-2): : 69 - &
  • [38] Double Operator Integrals in a Hilbert Space
    Mikhail Sh. Birman
    Michael Solomyak
    [J]. Integral Equations and Operator Theory, 2003, 47 : 131 - 168
  • [39] Factorization of Operator Functions in a Hilbert Space
    A. M. Gomilko
    [J]. Functional Analysis and Its Applications, 2003, 37 : 16 - 20
  • [40] SUPER HILBERT SPACE AND TIME OPERATOR
    ROSENBAU.DM
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (01): : 39 - &