Approximation of operator eigenvalue problems in a Hilbert space

被引:1
|
作者
Solovyev, S. I. [1 ]
机构
[1] Kazan Volga Reg Fed Univ, Inst Computat Math & Informat Technol, Dept Computat Math, 35 Kremlevskaya St, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
FINITE-ELEMENT APPROXIMATIONS; SYMMETRIC SPECTRAL PROBLEMS; BUBNOV-GALERKIN METHOD; SUPERCONVERGENCE; PERTURBATIONS; COMPUTATION; ERROR;
D O I
10.1088/1757-899X/158/1/012087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The eigenvalue problem for a compact symmetric positive definite operator in an infinite-dimensional Hilbert space is approximated by an operator eigenvalue problem in finitedimensional subspace. Error estimates for the approximate eigenvalues and eigenelements are established. These results can be applied for investigating the finite element method with numerical integration for differential eigenvalue problems.
引用
收藏
页数:6
相关论文
共 50 条