ON TRANSFINITE DIAMETERS IN Cd FOR GENERALIZED NOTIONS OF DEGREE
被引:0
|
作者:
Levenberg, Norman
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Math, 831 E Third St, Bloomington, IN 47405 USAIndiana Univ, Dept Math, 831 E Third St, Bloomington, IN 47405 USA
Levenberg, Norman
[1
]
Wielonsky, Franck
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille, Lab I2M UMR 7373, CMI 39 Rue Joliot Curie, F-13453 Marseille 20, FranceIndiana Univ, Dept Math, 831 E Third St, Bloomington, IN 47405 USA
Wielonsky, Franck
[2
]
机构:
[1] Indiana Univ, Dept Math, 831 E Third St, Bloomington, IN 47405 USA
[2] Univ Aix Marseille, Lab I2M UMR 7373, CMI 39 Rue Joliot Curie, F-13453 Marseille 20, France
We give a general formula for the C-transfinite diameter delta(C) (K) of a compact set K subset of C-2 which is a product of univariate compacta where C subset of (R+)(2) is a convex body. Along the way we prove a Rumely type formula relating delta(C) (K) and the C-Robin function rho v(C,K) of the C-extremal plurisubharmonic function V(C,K)( )for C subset of (R+)(2) a triangle T-a,T-b with vertices (0, 0), (b, 0), (0, a). Finally, we show how the definition of delta(C) (K) can be extended to include many nonconvex bodies C subset of R-d for d -circled sets K subset of C-d, and we prove an integral formula for delta(C) (K) which we use to compute a formula for delta(C) (E) where B is the Euclidean unit ball in C-2.
机构:
Univ New S Wales, Sydney Res Lab Kensington, Natl ICT Australia Ltd, Sydney, NSW 2052, AustraliaUniv New S Wales, Sydney Res Lab Kensington, Natl ICT Australia Ltd, Sydney, NSW 2052, Australia
Sharma, A
Stephan, F
论文数: 0引用数: 0
h-index: 0
机构:Univ New S Wales, Sydney Res Lab Kensington, Natl ICT Australia Ltd, Sydney, NSW 2052, Australia
Stephan, F
Ventsov, Y
论文数: 0引用数: 0
h-index: 0
机构:Univ New S Wales, Sydney Res Lab Kensington, Natl ICT Australia Ltd, Sydney, NSW 2052, Australia