ON TRANSFINITE DIAMETERS IN Cd FOR GENERALIZED NOTIONS OF DEGREE

被引:0
|
作者
Levenberg, Norman [1 ]
Wielonsky, Franck [2 ]
机构
[1] Indiana Univ, Dept Math, 831 E Third St, Bloomington, IN 47405 USA
[2] Univ Aix Marseille, Lab I2M UMR 7373, CMI 39 Rue Joliot Curie, F-13453 Marseille 20, France
关键词
D O I
10.7146/math.scand.a-126053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a general formula for the C-transfinite diameter delta(C) (K) of a compact set K subset of C-2 which is a product of univariate compacta where C subset of (R+)(2) is a convex body. Along the way we prove a Rumely type formula relating delta(C) (K) and the C-Robin function rho v(C,K) of the C-extremal plurisubharmonic function V(C,K)( )for C subset of (R+)(2) a triangle T-a,T-b with vertices (0, 0), (b, 0), (0, a). Finally, we show how the definition of delta(C) (K) can be extended to include many nonconvex bodies C subset of R-d for d -circled sets K subset of C-d, and we prove an integral formula for delta(C) (K) which we use to compute a formula for delta(C) (E) where B is the Euclidean unit ball in C-2.
引用
收藏
页码:337 / 360
页数:24
相关论文
共 50 条
  • [31] Generalized diameters of the mesh of trees
    Chen, WM
    Chen, GH
    Hsu, DF
    THEORY OF COMPUTING SYSTEMS, 2004, 37 (04) : 547 - 556
  • [32] Generalized Diameters of the Mesh of Trees
    Wei-Mei Chen
    Gen-Huey Chen
    D. Frank Hsu
    Theory of Computing Systems, 2004, 37 : 547 - 556
  • [33] Diameters of degree graphs of nonsolvable groups
    Lewis, ML
    White, DL
    JOURNAL OF ALGEBRA, 2005, 283 (01) : 80 - 92
  • [34] There is no upper bound of small transfinite compactness degree in metrizable spaces
    Chatyrko, Vitalij A.
    Hattori, Yasunao
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (07) : 1314 - 1320
  • [35] REMARKS ON CONCEPT OF GENERALIZED TRANSFINITE DIAMETER IN SENSE OF HILLE
    CHEVALIER, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (24): : 1714 - +
  • [36] Generalized notions of mind change complexity
    Sharma, A
    Stephan, F
    Ventsov, Y
    INFORMATION AND COMPUTATION, 2004, 189 (02) : 235 - 262
  • [37] Generalized Holevo theorem and distinguishability notions
    Bussandri, Diego G.
    Lamberti, Pedro W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (04)
  • [38] Generalized Notions of Module Character Amenability
    Bodaghi, Abasalt
    Ebrahimi, Hamzeh
    Bami, Mahmood Lashkarizadeh
    FILOMAT, 2017, 31 (06) : 1639 - 1654
  • [39] Generalized Diameters and Rabin Numbers of Networks
    Liaw S.-C.
    Chang G.J.
    Journal of Combinatorial Optimization, 1998, 2 (4) : 371 - 384
  • [40] Generalized diameters and Rabin numbers of networks
    Liaw, SC
    Chang, GJ
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1999, 2 (04) : 371 - 384