String and membrane condensation on three-dimensional lattices

被引:77
|
作者
Hamma, A [1 ]
Zanardi, P
Wen, XG
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] ISI, I-10133 Turin, Italy
[3] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy
来源
PHYSICAL REVIEW B | 2005年 / 72卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.72.035307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate the general properties of lattice spin models that have string and/or membrane condensed ground states. We discuss the properties needed to define a string or membrane operator. We study three three-dimensional spin models which lead to Z(2) gauge theory at low energies. All the three models are exactly soluble and produce topologically ordered ground states. The first model contains both closed-string and closed-membrane condensations. The second model contains closed-string condensation only. The ends of open strings behave like fermionic particles. The third model also has condensations of closed membranes and closed strings. The ends of open strings are bosonic while the edges of open membranes are fermionic. The third model contains a different type of topological order.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Observation of three-dimensional periodic vortex photonic lattices
    Lyu, Jing
    Lu, Chengzhen
    Shang, Chunlei
    Gao, Song
    Qi, Xinyuan
    Cai, Yangjian
    Gao, Yuanmei
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 130 : 147 - 152
  • [22] Temperature and localization of atoms in three-dimensional optical lattices
    Gatzke, M
    Birkl, G
    Jessen, PS
    Kastberg, A
    Rolston, SL
    Phillips, WD
    PHYSICAL REVIEW A, 1997, 55 (06) : R3987 - R3990
  • [23] Chiral magnetic effect in three-dimensional optical lattices
    Zheng, Zhen
    Lin, Zhi
    Zhang, Dan-Wei
    Zhu, Shi-Liang
    Wang, Z. D.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [24] Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures
    Basioli, Lovro
    Salamon, Kresimir
    Tkalcevic, Marija
    Mekterovic, Igor
    Bernstorff, Sigrid
    Micetic, Maja
    CRYSTALS, 2019, 9 (09):
  • [25] Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
    Egan, Paul F.
    Bauer, Isabella
    Shea, Kristina
    Ferguson, Stephen J.
    JOURNAL OF MECHANICAL DESIGN, 2019, 141 (03)
  • [26] Anomalous heat conduction in three-dimensional nonlinear lattices
    Shiba, Hayato
    Ito, Nobuyasu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (05)
  • [27] On the statistical properties of Klein polyhedra in three-dimensional lattices
    Illarionov, A. A.
    SBORNIK MATHEMATICS, 2013, 204 (06) : 801 - 823
  • [28] Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks
    Michelson, Aaron
    Minevich, Brian
    Emamy, Hamed
    Huang, Xiaojing
    Chu, Yong S.
    Yan, Hanfei
    Gang, Oleg
    SCIENCE, 2022, 376 (6589) : 203 - +
  • [29] Characterisation of a three-dimensional Brownian motor in optical lattices
    Sjolund, P.
    Petra, S. J. H.
    Dion, C. M.
    Hagman, H.
    Jonsell, S.
    Kastberg, A.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 44 (02): : 381 - 388
  • [30] Characterisation of a three-dimensional Brownian motor in optical lattices
    P. Sjölund
    S. J.H. Petra
    C. M. Dion
    H. Hagman
    S. Jonsell
    A. Kastberg
    The European Physical Journal D, 2007, 44 : 381 - 388