Nanocrystalline hematite α-Fe2O3 synthesis with different precursors and their composites with graphene oxide

被引:24
|
作者
Rehman, Attiya [1 ]
Zulfiqar, Sonia [2 ]
Shakir, Imran [3 ]
Aboud, Mohamed F. Aly [3 ]
Shahid, Muhammad [4 ]
Warsi, Muhammad Farooq [1 ]
机构
[1] Islamia Univ Bahawalpur, Dept Chem, Baghdad Ul Jadeed Campus, Bahawalpur 63100, Pakistan
[2] Amer Univ Cairo, Sch Sci & Engn, Dept Chem, New Cairo 11835, Egypt
[3] King Saud Univ, Coll Engn, SET Ctr, POB 800, Riyadh 11421, Saudi Arabia
[4] Univ Hafr Al Batin, Coll Sci, Dept Chem, POB 1803, Hafar al Batin 31991, Saudi Arabia
关键词
Hematite; Nanoparticles; Photocatalysis; Graphene oxide; MAGNETIC-PROPERTIES; WATER; NANOPARTICLES; NANOCOMPOSITE; TEMPERATURE; GAMMA-FE2O3; PHOTOCATALYSIS; DEGRADATION; IMPACT; ROUTE;
D O I
10.1016/j.ceramint.2019.12.050
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The facile wet chemical co-precipitation method was used for synthesis of hematite (alpha-Fe2O3) nanoparticles and nanocomposites with graphene oxide (GO) using ethylenediaminetetraacetic acid (EDTA) and diethylene-triaminepentaacetic acid (DTPA) as different precursor materials. EDTA and DTPA acted as chelating agents to avoid multi nucleation and aggregation of nanoparticles in growth process. For nanocomposite, GO was considered as flexible material with theoretical specific surface area similar to 1000 m(2)/g and better surface functionalization due to presence of oxygen containing functional groups i.e. carboxylic, hydroxyl and epoxides groups at basal edge. The structural analysis of prepared nanoparticles and nanocomposites was conducted by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD confirmed various cell parameters and crystalline structure of prepared particles. The crystallite size was found 5 nm-10 nm. After preparation of nanocomposites of hematite alpha-Fe2O3 (EDTA or DTPA) nanoparticles with GO, they were characterized by Scanning electron microscopy (SEM) and UV-Visible spectroscopy. Current-Voltage (I-V) measurements were also carried out to observe the decrease in resistivity values after mixing with GO. UV-Visible spectroscopy revealed the better photocatalytic degradation of methylene blue (MB) in visible light. Degradation of methylene blue was observed up to 67% with alpha-Fe2O3 (DTPA) @ GO and 86.06% for alpha-Fe2O3 (EDTA) @ GO greater than simple alpha-Fe2O3 (DTPA) 21.2% and alpha-Fe2O3 (EDTA) 36.8% nanoparticles. As a result, synergistic effect of alpha-Fe2O3 (EDTA) @ GO showed better photocatalytic action due to GO layer, it acted as electron acceptor and kept high adsorption properties. Electrostatic bonding in alpha-Fe2O3 (EDTA) @ GO with MB having different functional groups showed the stability of photocatalyst, not to be leached into water. For prolonged time, the charge carrier recombination was suppressed for improved degradation rate of MB in visible light in presence of alpha-Fe2O3 (EDTA) @ GO.
引用
收藏
页码:8227 / 8237
页数:11
相关论文
共 50 条
  • [41] Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles
    Darezereshki, Esmaeel
    Bakhtiari, Fereshteh
    Alizadeh, Mostafa
    Vakylabad, Ali Behrad
    Ranjbar, Mohammad
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2012, 15 (01) : 91 - 97
  • [42] Ammonium mediated hydrothermal synthesis of nanostructured hematite (α-Fe2O3) particles
    Wang, Xiaoge
    MATERIALS RESEARCH BULLETIN, 2012, 47 (09) : 2513 - 2517
  • [43] Electronic Structure of Excitons in Hematite Fe2O3
    Rassouli, Lili
    Dupuis, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 743 - 758
  • [44] Hematite (α-Fe2O3) Photoanodes for the Photooxidation of Water
    Herrmann-Geppert, I.
    Bogdanoff, P.
    Hepperle, L.
    Fiechter, S.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33): : 201 - 212
  • [45] Structure transition of nanocrystalline Fe2O3
    Sha, Jian
    Ye, Xishang
    Chen, Bin
    Zhang, Qirui
    Jia, Zhengkuan
    Lu, Guanglie
    Peng, Zifei
    Zhang, Lide
    Journal of Materials Science and Technology, 1997, 13 (04): : 361 - 363
  • [46] Structure transition of nanocrystalline Fe2O3
    Sha, J
    Ye, XS
    Chen, B
    Zhang, QR
    Jiao, ZK
    Li, GL
    Peng, ZF
    Zhang, LD
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 1997, 13 (04) : 361 - 363
  • [47] Structure Transition of Nanocrystalline Fe2O3
    Jian SHA
    Xisheng YE
    Bin CHEN
    Qirui ZHANG and Zhengkuan JIAO(Dept. of Physics
    JournalofMaterialsScience&Technology, 1997, (04) : 361 - 363
  • [48] Novel Composites of α-Fe2O3 Tetrakaidecahedron and Graphene Oxide as an Effective Photoelectrode with Enhanced Photocurrent Performances
    Liu, Shaoxiong
    Zheng, Lingxia
    Yu, Pingping
    Han, Sancan
    Fang, Xiaosheng
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) : 3331 - 3339
  • [49] α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials
    Lee, K. K.
    Deng, S.
    Fan, H. M.
    Mhaisalkar, S.
    Tan, H. R.
    Tok, E. S.
    Loh, K. P.
    Chin, W. S.
    Sow, C. H.
    NANOSCALE, 2012, 4 (09) : 2958 - 2961
  • [50] Thermal stability of nanocrystalline ε-Fe2O3
    Brazda, Petr
    Vecernikova, Eva
    Plizingrova, Eva
    Lancok, Adriana
    Niznansky, Daniel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (01) : 85 - 91