Local solutions to positive characteristic non-Archimedean differential equations

被引:0
|
作者
dos Santos, Joao Pedro Pinto [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
differential operators in positive characteristic; Tannakian fundamental groups; rigid geometry; differential Galois theory;
D O I
10.1112/S0010437X07003089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the complex domain, one can integrate (solve) holomorphic ordinary differential equations (ODEs) near a non-singular point. We study the existence of solutions in the case of a positive characteristic base field k which is complete with respect to a non-Archimedean absolute value. ODEs are substituted by modules over a ring of analytic functions endowed with an action of all differential operators. The monodromy groups associated to the corresponding category are computed.
引用
收藏
页码:1465 / 1477
页数:13
相关论文
共 50 条
  • [31] Local heights of subvarieties over non-archimedean fields
    Gubler, W
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 498 : 61 - 113
  • [32] On local properties of non-archimedean analytic spaces II
    Temkin, M
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 140 (1) : 1 - 27
  • [33] Non-Archimedean Coamoebae
    Nisse, Mounir
    Sottile, Prank
    TROPICAL AND NON-ARCHIMEDEAN GEOMETRY, 2013, 605 : 73 - 91
  • [34] Non-archimedean pinchings
    Temkin, Michael
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 2099 - 2109
  • [35] ON NON-ARCHIMEDEAN ANALYSIS
    NARICI, L
    BECKENSTEIN, E
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1990, 607 : 107 - 115
  • [36] NON-ARCHIMEDEAN UNIFORMIZATION
    MUSTAFIN, GA
    MATHEMATICS OF THE USSR-SBORNIK, 1978, 34 (02): : 187 - 214
  • [37] POSITIVE SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS IN NEIGHBORHOOD OF A SMOOTH NON-CHARACTERISTIC HYPERSURFACE
    KONDRATE.VA
    ENDELMAN, SD
    PLETNEVA, TG
    DOKLADY AKADEMII NAUK SSSR, 1972, 204 (02): : 279 - &
  • [38] NON-ARCHIMEDEAN STRINGS
    FREUND, PGO
    OLSON, M
    PHYSICS LETTERS B, 1987, 199 (02) : 186 - 190
  • [39] Non-Archimedean Probability
    Benci, Vieri
    Horsten, Leon
    Wenmackers, Sylvia
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 121 - 151
  • [40] Non-Archimedean Probability
    Vieri Benci
    Leon Horsten
    Sylvia Wenmackers
    Milan Journal of Mathematics, 2013, 81 : 121 - 151