Iteratively Reweighted Blind Deconvolution With Adaptive Regularization Parameter Estimation

被引:6
|
作者
Fang, Houzhang [1 ]
Chang, Yi [2 ]
Zhou, Gang [3 ]
Deng, Lizhen [4 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Shaanxi, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Iteratively reweighted; blind deconvolution; regularization parameter selection; image restoration; robust regression; GENERALIZED CROSS-VALIDATION; IMAGE-RESTORATION; ALGORITHM; POISSON; SUBROUTINES; NOISE;
D O I
10.1109/ACCESS.2017.2719119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many realistic image processing applications, the acquired images often suffer from mixed noises and blurring, which greatly degrade the image quality. In this paper, we propose an iteratively reweighted blind deconvolution method with robust regression for obtaining high quality images with mixed noises present. First, we construct a variational regularization model, including a robust regression data term with an adaptive reweighted least square criterion, which is robust to the mixed noises. To preserve the sharp edges and suppress the noise, a total variation-based regularization term for the image is incorporated into the model. Moreover, a Laplacian regularization term is imposed on the point spread function (PSF) for better smoothness. The subsequent optimization problems for the image and the PSF are solved using the limited-memory BFGS-B algorithm suitable for the large-scale problems. In addition, to improve the practicality of the method, a variant of the generalized cross validation method is derived and adopted to automatically estimate the regularization parameters for the image and the PSF. Experiments on simulated and real images demonstrate that the proposed method is superior to the state-of-the-art methods in terms of both subjective measure and visual quality.
引用
收藏
页码:11959 / 11973
页数:15
相关论文
共 50 条
  • [41] Revisiting reweighted graph total variation blind deconvolution and beyond
    Shao, Wen-Ze
    Deng, Hai-Song
    Luo, Wei-Wei
    Li, Jin-Ye
    Liu, Mei-Lin
    VISUAL COMPUTER, 2024, 40 (05): : 3119 - 3135
  • [42] PARAMETER ESTIMATION IN BAYESIAN BLIND DECONVOLUTION WITH SUPER GAUSSIAN IMAGE PRIORS
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1632 - 1636
  • [43] Blind deconvolution using a variational approach to parameter, image, and blur estimation
    Molina, Rafael
    Mateos, Javier
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) : 3715 - 3727
  • [44] ITERATIVELY REWEIGHTED PENALIZED LEAST-SQUARES WITH CONCOMITANT SCALE ESTIMATION
    CUNNINGHAM, JK
    AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1988, : 159 - 161
  • [45] Parameter Estimation in Spike and Slab Variational Inference for Blind Image Deconvolution
    Serra, Juan G.
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1495 - 1499
  • [46] Adaptive blind deconvolution using generalized cross-validation with generalized lp/lq norm regularization: Adaptive blind deconvolution using generalized cross-validation with generalized lp/lq norm regularization
    Chen L.
    Sun Q.
    Wang F.
    Neurocomputing, 2022, 399 : 75 - 85
  • [47] Regularization of the image division approach to blind deconvolution
    Barraza-Felix, S
    Frieden, BR
    APPLIED OPTICS, 1999, 38 (11) : 2232 - 2239
  • [48] Blind Poissonian images deconvolution with framelet regularization
    Fang, Houzhang
    Yan, Luxin
    Liu, Hai
    Chang, Yi
    OPTICS LETTERS, 2013, 38 (04) : 389 - 391
  • [49] Extended Mumford-Shah regularization in Bayesian estimation for blind image deconvolution and segmentation
    Zheng, Hongwei
    Hellwich, Olaf
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2006, 4040 : 144 - 158
  • [50] Adaptive iteratively reweighted sine wave fitting method for rapid wind vector estimation of pulsed coherent Doppler lidar
    Rui, Xunbao
    Guo, Pan
    Chen, He
    Chen, Siying
    Zhang, Yinchao
    OPTICS EXPRESS, 2019, 27 (15) : 21319 - 21334