Person Re-Identification with Feature Pyramid Optimization and Gradual Background Suppression

被引:18
|
作者
Tang, Yingzhi [1 ]
Yang, Xi [1 ]
Wang, Nannan [1 ]
Song, Bin [1 ]
Gao, Xinbo [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Person re-identification; End-to-end; Feature pyramid optimization; Gradual Background Suppression;
D O I
10.1016/j.neunet.2020.01.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with face recognition, the performance of person re-identification (re-ID) is still far from practical application. Among various interferences, there are two factors seriously limiting the performance improvement, i.e., the feature discriminability determined by "external network effectiveness", and the image quality determined by "internal background clutters". Target at the "external network effectiveness" problem, feature pyramids are effective to learn discriminative features because they can learn both detailed features from high-resolution shallow layers and semantical features from low-resolution deep layers, however, it can only achieve slight improvement on re-ID tasks because of the error back propagation problem. To handle the problem and utilize the effectiveness of feature pyramids, we propose a strategy called Feature Pyramid Optimization (FPO). Instead of concatenating features directly, the selected layers are optimized independently in a top-bottom order. Target at the "internal background clutters" problem, background suppression is generally considered for removing the environmental interference and improving the image quality. Several mask-based methods are used attempting to totally remove background clutters but achieve limited promotion because of the mask sharpening effect. We propose a novel strategy, i.e., Gradual Background Suppression (GBS) to reduce the background clutters and keep the smoothness of images simultaneously. Extensive experiments have been conducted and the results demonstrate the effectiveness of both FPO and GBS. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [11] Gradient-supervised person re-identification based on dense feature pyramid network
    Hou, Shaoqi
    Yin, Kangning
    Liang, Jie
    Wang, Zhiguo
    Pan, Yixi
    Yin, Guangqiang
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (06) : 5329 - 5342
  • [12] SBSGAN: Suppression of Inter-Domain Background Shift for Person Re-Identification
    Huang, Yan
    Wu, Qiang
    Xu, JingSong
    Zhong, Yi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9526 - 9535
  • [13] Person Re-Identification for Suppressing Background Interference
    Liu, Zhigang
    Huang, Zhao
    Xie, Dongjun
    Tian, Feng
    Li, Tingyu
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (04): : 563 - 569
  • [14] Deep Feature Ranking for Person Re-Identification
    Nie, Jie
    Huang, Lei
    Zhang, Wenfeng
    Wei, Guanqun
    Wei, Zhiqiang
    IEEE ACCESS, 2019, 7 : 15007 - 15017
  • [15] Omnidirectional Feature Learning for Person Re-Identification
    Wu, Di
    Yang, Hong-Wei
    Huang, De-Shuang
    Yuan, Chang-An
    Qin, Xiao
    Zhao, Yang
    Zhao, Xin-Yong
    Sun, Jian-Hong
    IEEE ACCESS, 2019, 7 : 28402 - 28411
  • [16] A feature enhancement loss for person re-identification
    Peng, Yao
    Lin, Yining
    Ni, Huajian
    Gao, Hua
    Hu, Chenchen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [17] Feature mask network for person re-identification
    Ding, Guodong
    Khan, Salman
    Tang, Zhenmin
    Porikli, Fatih
    PATTERN RECOGNITION LETTERS, 2020, 137 : 91 - 98
  • [18] Appearance feature enhancement for person re-identification
    Zhang, Wenfeng
    Huang, Lei
    Wei, Zhiqiang
    Nie, Jie
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 163
  • [19] Spectral Feature Transformation for Person Re-Identification
    Luo, Chuanchen
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4975 - 4984
  • [20] Feature Completion for Occluded Person Re-Identification
    Hou, Ruibing
    Ma, Bingpeng
    Chang, Hong
    Gu, Xinqian
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4894 - 4912