On scalar curvature rigidity of vacuum static spaces

被引:24
|
作者
Qing, Jie [1 ]
Yuan, Wei [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
POSITIVE MASS THEOREM; PROOF; MANIFOLDS;
D O I
10.1007/s00208-015-1302-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend the local scalar curvature rigidity result in Brendle and Marques (J Differ Geom 88:379-394, 2011) to a small domain on general vacuum static spaces, which confirms the interesting dichotomy of local surjectivity and local rigidity about the scalar curvature in general in the light of the paper (Corvino, Commun Math Phys 214:137-189, 2000). We obtain the local scalar curvature rigidity of bounded domains in hyperbolic spaces. We also obtain the global scalar curvature rigidity for conformal deformations of metrics in the domains, where the lapse functions are positive, on vacuum static spaces with positive scalar curvature, and show such domains are maximal, which generalizes the work in Hang and Wang (Commun Anal Geom 14:91-106, 2006).
引用
下载
收藏
页码:1257 / 1277
页数:21
相关论文
共 50 条