A new uncertain linear regression model based on equation deformation

被引:14
|
作者
Wang, Shuai [1 ,2 ]
Ning, Yufu [1 ,2 ]
Shi, Hongmei [3 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, 31699 Jingshi East Rd, Jinan, Peoples R China
[2] Key Lab Informat Secur & Intelligent Control Univ, Jinan 250100, Peoples R China
[3] Shandong Agr & Engn Univ, Sch Informat Sci & Engn, 866 Nongganyuan Rd, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Equation deformation method; Least squares estimation; Linear regression model; Uncertainty theory;
D O I
10.1007/s00500-021-06030-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When the observed data are imprecise, the uncertain regression model is more suitable for the linear regression analysis. Least squares estimation can fully consider the given data and minimize the sum of squares of residual error and can effectively solve the linear regression equation of imprecisely observed data. On the basis of uncertainty theory, this paper presents an equation deformation method for solving unknown parameters in uncertain linear regression equations. We first establish the equation deformation method of one-dimensional linear regression model and then extend it to the case of multiple linear regression model. We also combine the equation deformation method with Cramer's rule and matrix and propose the Cramer's rule and matrix elementary transformation method to solve the unknown parameters of the uncertain linear regression equation. Numerical example show that the equation deformation method can effectively solve the unknown parameters of the uncertain linear regression equation.
引用
收藏
页码:12817 / 12824
页数:8
相关论文
共 50 条
  • [31] Uncertain hypothesis testing of multivariate uncertain regression model
    Zhang, Guidong
    Sheng, Yuhong
    Shi, Yuxin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (06) : 7341 - 7350
  • [32] A new bounded log-linear regression model
    HaiYing Wang
    Nancy Flournoy
    Eloi Kpamegan
    Metrika, 2014, 77 : 695 - 720
  • [33] A new bounded log-linear regression model
    Wang, HaiYing
    Flournoy, Nancy
    Kpamegan, Eloi
    METRIKA, 2014, 77 (05) : 695 - 720
  • [34] Some New Diagnostics of Multicollinearity in Linear Regression Model
    Ullah, Muhammad Imdad
    Aslam, Muhammad
    Altaf, Saima
    Ahmed, Munir
    SAINS MALAYSIANA, 2019, 48 (09): : 2051 - 2060
  • [35] NEW TEST FOR AUTOCORRELATED ERRORS IN LINEAR REGRESSION MODEL
    BERENBLUT, II
    WEBB, GI
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1973, 35 (01) : 33 - 50
  • [36] Linear regression model with new symmetric distributed errors
    Atsedeweyn, A. Asrat
    Rao, K. Srinivasa
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) : 364 - 381
  • [37] A New Estimator for the Gaussian Linear Regression Model with Multicollinearity
    Dawoud, Issam
    Kibria, B. M. Golam
    Lukman, Adewale F.
    Olufemi, Onifade C.
    THAILAND STATISTICIAN, 2023, 21 (04): : 910 - 925
  • [38] Pharmacokinetic model for extravascular administration based on uncertain differential equation
    Liu Z.
    Kang R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 13887 - 13899
  • [39] A new robust ridge parameter estimator based on search method for linear regression model
    Goktas, Atila
    Akkus, Ozge
    Kuvat, Aykut
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2457 - 2472
  • [40] Sports intensity and energy consumption based on fractional linear regression equation
    Hao, Haitao
    Albarakati, Abdullah
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (02) : 115 - 126