Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis

被引:102
|
作者
Usachov, D. [1 ]
Adamchuk, V. K. [1 ]
Haberer, D. [2 ]
Grueneis, A. [2 ,3 ]
Sachdev, H. [4 ]
Preobrajenski, A. B. [5 ]
Laubschat, C. [6 ]
Vyalikh, D. V. [1 ,6 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
[2] IFW Dresden, D-01171 Dresden, Germany
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Saarland, D-66041 Saarbrucken, Germany
[5] Lund Univ, Max Lab, S-22100 Lund, Sweden
[6] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 07期
关键词
ELECTRONIC-STRUCTURE; METAL-SURFACES; MONOLAYER; NANOMESH; INTERCALATION; TEMPERATURE; NANOTUBES; GRAPHITE; STATES;
D O I
10.1103/PhysRevB.82.075415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (h-BN) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, x-ray photoemission, and absorption techniques. It has been demonstrated that the transition of the h-BN layer from the "rigid" into the "quasifreestanding" state is accompanied by a change in its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasifreestanding h-BN monolayer. We anticipate that the in situ synthesized weakly interacting graphene/h-BN double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Synthesis of continuous hexagonal boron nitride films on alloy substrate
    Lu, Guangyuan
    Wu, Tianru
    Wang, Haomin
    Yang, Peng
    Shi, Zhiyuan
    Yang, Chao
    Xie, Xiaoming
    [J]. MATERIALS LETTERS, 2017, 196 : 252 - 255
  • [42] Computational analysis of device-to-device variability in resistive switching through single-layer hexagonal boron nitride and graphene vertical heterostructure model
    Turfanda, Aykut
    Unlu, Hilmi
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (32)
  • [43] Electronic Properties of Boron Doped Single-Layer Graphene
    Tikhonov, Roman S.
    Sharin, Egor P.
    [J]. 2D SYSTEMS OF THE STRONG CORRELATED ELECTRONS: FROM FUNDAMENTAL RESEARCH TO PRACTICAL APPLICATIONS, 2018, 2041
  • [44] Single layer hexagonal boron nitride films on Ni(110)
    Greber, Thomas
    Brandenberger, Louis
    Corso, Martina
    Tamai, Anna
    Osterwalder, Jürg
    [J]. e-J. Surf. Sci. Nanotechnol., 1600, (410-413):
  • [45] Single layer hexagonal boron nitride films on Ni(110)
    Greber, Thomas
    Brandenberger, Louis
    Corso, Martina
    Tamai, Anna
    Osterwalder, Jurg
    [J]. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2006, 4 : 410 - 413
  • [46] DNA translocation through single-layer boron nitride nanopores
    Gu, Zonglin
    Zhang, Yuanzhao
    Luan, Binquan
    Zhou, Ruhong
    [J]. SOFT MATTER, 2016, 12 (03) : 817 - 823
  • [47] Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules
    Yuhui He
    Makusu Tsutsui
    Sou Ryuzaki
    Kazumichi Yokota
    Masateru Taniguchi
    Tomoji Kawai
    [J]. NPG Asia Materials, 2014, 6 : e104 - e104
  • [48] Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules
    He, Yuhui
    Tsutsui, Makusu
    Ryuzaki, Sou
    Yokota, Kazumichi
    Taniguchi, Masateru
    Kawai, Tomoji
    [J]. NPG ASIA MATERIALS, 2014, 6 : e104 - e104
  • [49] Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate
    Bischoff, D.
    Kraehenmann, T.
    Droescher, S.
    Gruner, M. A.
    Barraud, C.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (20)
  • [50] Quasiparticle Band Gap Engineering of Graphene and Graphone on Hexagonal Boron Nitride Substrate
    Kharche, Neerav
    Nayak, Saroj K.
    [J]. NANO LETTERS, 2011, 11 (12) : 5274 - 5278