CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells

被引:8
|
作者
Kotowski, Mateusz [1 ]
Sharma, Sumana [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, MRC Human Immunol Unit, Oxford OX3 9DS, England
基金
英国惠康基金;
关键词
primary T cells; CRISPR; Cas9; genome-editing; CAR-T cells; CHIMERIC-ANTIGEN-RECEPTOR; HIGHLY EFFICIENT; STEM; CD4(+); CCR5; CAR; DNA; INHIBITION; EXPRESSION; DISCOVERY;
D O I
10.3390/mps3040079
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
While clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing techniques have been widely adapted for use in immortalised immune cells, efficient manipulation of primary T cells has proved to be more challenging. Nonetheless, the rapid expansion of the CRISPR toolbox accompanied by the development of techniques for delivery of CRISPR components into primary T cells now affords the possibility to genetically manipulate primary T cells both with precision and at scale. Here, we review the key features of the techniques for primary T cell editing and discuss how the new generation of CRISPR-based tools may advance genetic engineering of these immune cells. This improved ability to genetically manipulate primary T cells will further enhance our fundamental understanding of cellular signalling and transcriptional networks in T cells and more importantly has the potential to revolutionise T cell-based therapies.
引用
收藏
页码:1 / 27
页数:28
相关论文
共 50 条
  • [41] Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing
    Guo, Zhongyuan
    Zhu, Audrey T.
    Fang, Ronnie H.
    Zhang, Liangfang
    NANO RESEARCH, 2024, : 8904 - 8925
  • [42] CRISPR-based RNA editing: diagnostic applications and therapeutic options
    Gulei, Diana
    Raduly, Lajos
    Berindan-Neagoe, Ioana
    Calin, George Adrian
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2019, 19 (02) : 83 - 88
  • [43] A Review of CRISPR-Based Genome Editing: Survival, Evolution and Challenges
    Ahmad, Hafiz Ishfaq
    Ahmad, Muhammad Jamil
    Asif, Akhtar Rasool
    Adnan, Muhammad
    Iqbal, Muhammad Kashif
    Mehmood, Khalid
    Muhammad, Sayyed Aun
    Bhuiyan, Ali Akbar
    Elokil, Abdelmotaleb
    Du, Xiaoyong
    Zhao, Changzhi
    Liu, Xiangdong
    Xie, Shengsong
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2018, 28 : 47 - 68
  • [44] Accounting for diversity in the design of CRISPR-based therapeutic genome editing
    Saha, Krishanu
    NATURE GENETICS, 2023, 55 (01) : 6 - 7
  • [45] CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement
    Zegeye, Workie Anley
    Tsegaw, Mesfin
    Zhang, Yingxin
    Cao, Liyong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)
  • [46] Basic Principles and Clinical Applications of CRISPR-Based Genome Editing
    Lim, Jung Min
    Kim, Hyongbum Henry
    YONSEI MEDICAL JOURNAL, 2022, 63 (02) : 105 - 113
  • [47] CRISPR-Based Genome Editing and Its Applications in Woody Plants
    Min, Tian
    Hwarari, Delight
    Li, Dong'ao
    Movahedi, Ali
    Yang, Liming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [48] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [49] CRISPR-based genome editing through the lens of DNA repair
    Nambiar, Tarun S.
    Baudrier, Lou
    Billon, Pierre
    Ciccia, Alberto
    MOLECULAR CELL, 2022, 82 (02) : 348 - 388
  • [50] Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing
    Clarissa, Elizabeth Maria
    Karmacharya, Mamata
    Choi, Hyunmin
    Kumar, Sumit
    Cho, Yoon-Kyoung
    SMALL, 2025,