Torsional creep problems involving Grushin-type operators

被引:0
|
作者
Mihailescu, Mihai [1 ]
Stancu-Dumitru, Denisa [2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
关键词
Torsional creep problems; Grushinp-Laplacian; Weak solutions; Compact embeddings; Gamma-convergence; INEQUALITIES; EXISTENCE;
D O I
10.1016/j.aml.2021.107423
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behaviour of solutions for a family of torsional creep problems involving the Grushin p-Laplacian. Our results complement some earlier works on the topic by Payne and Philippin (1977), Kawohl (1990) and Bhattacharya et al. (1991). (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Generalizations of the drift Laplace equation over the quaternions in a class of Grushin-type spaces
    Bieske, Thomas
    Blackwell, Keller L.
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2023, 6 (03): : 164 - 175
  • [33] A HARDY INEQUALITY FOR THE GRUSHIN TYPE OPERATORS
    Zhu, Li
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 923 - 930
  • [34] Infinitely many solutions for a critical Grushin-type problem via local Pohozaev identities
    Min Liu
    Zhongwei Tang
    Chunhua Wang
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1737 - 1762
  • [35] EXISTENCE THEOREMS FOR CRITICAL DEGENERATE EQUATIONS INVOLVING THE GRUSHIN OPERATORS
    Nguyen, Huong Thi Thu
    Nguyen, Tri Minh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (01): : 137 - 151
  • [36] Infinitely many solutions for a critical Grushin-type problem via local Pohozaev identities
    Liu, Min
    Tang, Zhongwei
    Wang, Chunhua
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (05) : 1737 - 1762
  • [37] Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators
    Wei, Yunfeng
    Chen, Caisheng
    Chen, Qiang
    Yang, Hongwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 320 - 333
  • [38] 2D Grushin-type equations: Minimal time and null controllable data
    Beauchard, Karine
    Miller, Luc
    Morancey, Morgan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 5813 - 5845
  • [39] ON A FAMILY OF TORSIONAL CREEP PROBLEMS
    KAWOHL, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 : 1 - 22
  • [40] Liouville-type theorems for double-phase problems involving the Grushin operator
    Khuat, Quang Thanh
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (1-2): : 237 - 257