Clustering analysis as a basic tool for hyperspectral remote sensing image

被引:1
|
作者
Xu, Han [1 ]
Li, Xiaojuan [1 ]
Gao, Xiaowei [2 ]
机构
[1] Capital Normal Univ, Coll Resource Environm & Tourism, Beijing, Peoples R China
[2] ImageInfo Co LTD, Beijing, Peoples R China
关键词
clustering analysis; hyperspectral remote sensing; supervised/unsupervised classification; CLASSIFICATION;
D O I
10.1117/12.902115
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Clustering analysis groups data objects based on information only found in the data that describes the objects and the relationships. As it is a spatial method, more research are focused on remote sensing application recently. This paper presents comparison of two classic cluster algorithms used in hyperspectral remote sensing image classification and the results showed that the classification of maximum likelihood algorithm is better than ISODATA algorithm.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning
    Huo, Lei-Gang
    Feng, Xiang-Chu
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (11): : 2723 - 2729
  • [32] ENSEMBLE OF TRANSFER COMPONENT ANALYSIS FOR DOMAIN ADAPTATION IN HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4762 - 4765
  • [33] Remote Sensing of Lake Sediment Core Particle Size Using Hyperspectral Image Analysis
    Ghanbari, Hamid
    Jacques, Olivier
    Adaime, Marc-Elie
    Gregory-Eaves, Irene
    Antoniades, Dermot
    REMOTE SENSING, 2020, 12 (23) : 1 - 17
  • [34] A MULTI-MANIFOLD CLUSTERING ALGORITHM FOR HYPERSPECTRAL REMOTE SENSING IMAGERY
    Hassanzadeh, Aidin
    Kauranne, Tuomo
    Kaarna, Arto
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3326 - 3329
  • [35] A New Sparse Subspace Clustering Algorithm for Hyperspectral Remote Sensing Imagery
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) : 43 - 47
  • [36] Sparsity-Based Clustering for Large Hyperspectral Remote Sensing Images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10410 - 10424
  • [37] Adaptive Ensemble Clustering for Image Segmentation in Remote Sensing
    Yao, Tingting
    Liu, Chang
    Deng, Zhian
    Liu, Xiaoming
    Liu, Jiacheng
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 1608 - 1613
  • [38] Remote sensing image segmentation based on information clustering
    Li, Yu (liyu@lntu.edu.cn), 1600, China University of Mining and Technology (46):
  • [39] Novel feature extraction method for hyperspectral remote sensing image
    Liu, Chunhong
    Zhao, Huijie
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [40] Review of hyperspectral remote sensing image subpixel information extraction
    Feng R.
    Wang L.
    Zeng T.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1187 - 1201