Arrest stress of uniformly sheared wet granular matter

被引:1
|
作者
Rahbari, S. H. Ebrahimnazhad [1 ]
Brinkmann, M. [2 ,3 ]
Vollmer, J. [2 ,4 ]
机构
[1] Azarbaijan Shahid Madani Univ, Fac Sci, Dept Phys, Plasma & Condensed Matter Computat Lab, Tabriz 51745406, Iran
[2] Max Planck Inst Dynam & Selbstorg, D-37077 Gottingen, Germany
[3] Univ Saarland, Expt Phys, D-66123 Saarbrucken, Germany
[4] Univ Gottingen, Fak Phys, D-37077 Gottingen, Germany
基金
美国国家科学基金会;
关键词
FLOWS;
D O I
10.1103/PhysRevE.91.062201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We conduct extensive independent numerical experiments considering frictionless disks without internal degrees of freedom (rotation, etc.) in two dimensions. We report here that for a large range of the packing fractions below random-close packing, all components of the stress tensor of wet granular materials remain finite in the limit of zero shear rate. This is direct evidence for a fluid-to-solid arrest transition. The offset value of the shear stress characterizes plastic deformation of the arrested state which corresponds to dynamic yield stress of the system. Based on an analytical line of argument, we propose that the mean number of capillary bridges per particle, nu, follows a nontrivial dependence on the packing fraction, phi, and the capillary energy, epsilon. Most noticeably, we show that nu is a generic and universal quantity which does not depend on the driving protocol. Using this universal quantity, we calculate the arrest stress, sigma(a), analytically based on a balance of the energy injection rate due to the external force driving the flow and the dissipation rate accounting for the rupture of capillary bridges. The resulting prediction of sa is a nonlinear function of the packing fraction, phi, and the capillary energy, epsilon. This formula provides an excellent, parameter-free prediction of the numerical data. Corrections to the theory for small and large packing fractions are connected to the emergence of shear bands and of contributions to the stress from repulsive particle interactions, respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Wet granular matter: a truly complex fluid
    Strauch, Stefanie
    Herminghaus, Stephan
    SOFT MATTER, 2012, 8 (32) : 8271 - 8280
  • [32] Segregation and layering in the flow of wet granular matter
    Samadani, A
    Kudrolli, A
    POWDERS AND GRAINS 2001, 2001, : 429 - 432
  • [33] Wet granular matter under vertical agitation
    Scheel, M
    Geromichalos, D
    Herminghaus, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (38) : S4213 - S4218
  • [34] Stress transmission in wet granular materials
    V. Richefeu
    F. Radjaı
    M. S. El Youssoufi
    The European Physical Journal E, 2006, 21
  • [35] Stress transmission in wet granular materials
    Richefeu, V.
    Radjai, F.
    El Youssoufi, M. S.
    EUROPEAN PHYSICAL JOURNAL E, 2006, 21 (04): : 359 - 369
  • [36] Stress fluctuations for sheared 3D granular materials
    Behringer, RP
    Miller, B
    POWDERS & GRAINS 97, 1997, : 333 - 336
  • [37] Stress transmission in granular matter
    Aste, T
    Di Matteo, T
    d'Agliano, EG
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (09) : 2391 - 2402
  • [38] Nonlinear stress and fluctuation dynamics of sheared disordered wet foam
    Pratt, E
    Dennin, M
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [39] A response function perspective on yielding of wet granular matter
    Rahbari, S. H. Ebrahimnazhad
    Vollmer, J.
    Herminghaus, S.
    Brinkmann, M.
    EPL, 2009, 87 (01)
  • [40] Mixing characteristics of wet granular matter in a bladed mixer
    Radl, Stefan
    Kalvoda, Eva
    Glasser, Benjamin J.
    Khinast, Johannes G.
    POWDER TECHNOLOGY, 2010, 200 (03) : 171 - 189