Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging

被引:70
|
作者
Wisely, C. Ellis [1 ]
Wang, Dong [2 ]
Henao, Ricardo [3 ]
Grewal, Dilraj S. [1 ]
Thompson, Atalie C. [1 ]
Robbins, Cason B. [1 ]
Yoon, Stephen P. [1 ]
Soundararajan, Srinath [1 ]
Polascik, Bryce W. [1 ]
Burke, James R. [4 ]
Liu, Andy [4 ]
Carin, Lawrence [2 ]
Fekrat, Sharon [1 ]
机构
[1] Duke Univ Hlth Syst, Dept Ophthalmol, Durham, NC USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[4] Duke Univ Hlth Syst, Dept Neurol, Durham, NC USA
关键词
retina; diagnostic tests; investigation; imaging; OPTICAL COHERENCE TOMOGRAPHY; MILD COGNITIVE IMPAIRMENT; DEMENTIA; ABNORMALITIES;
D O I
10.1136/bjophthalmol-2020-317659
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/Aims To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. Methods Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. Results 284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). Conclusion Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
引用
收藏
页码:388 / 395
页数:8
相关论文
共 50 条
  • [21] Classification of Alzheimer’s Disease Using Ensemble Convolutional Neural Network With LFA Algorithm
    Kim, Chang-Min
    Lee, Woobeom
    IEEE ACCESS, 2023, 11 : 143004 - 143015
  • [22] Multimodal Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2530 - 2537
  • [23] Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks
    Abdelaziz, Mohammed
    Wang, Tianfu
    Elazab, Ahmed
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 121
  • [24] Multimodal Coherent Imaging of Retinal Biomarkers of Alzheimer’s Disease in a Mouse Model
    Ge Song
    Zachary A. Steelman
    Stella Finkelstein
    Ziyun Yang
    Ludovic Martin
    Kengyeh K. Chu
    Sina Farsiu
    Vadim Y. Arshavsky
    Adam Wax
    Scientific Reports, 10
  • [25] Multimodal Coherent Imaging of Retinal Biomarkers of Alzheimer's Disease in a Mouse Model
    Song, Ge
    Steelman, Zachary A.
    Finkelstein, Stella
    Yang, Ziyun
    Martin, Ludovic
    Chu, Kengyeh K.
    Farsiu, Sina
    Arshavsky, Vadim Y.
    Wax, Adam
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [26] An Exploration: Alzheimer's Disease Classification Based on Convolutional Neural Network
    Sethi, M.
    Ahuja, S.
    Rani, S.
    Koundal, D.
    Zaguia, A.
    Enbeyle, W.
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [27] A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer's Disease
    Liu, Maximus
    Shalaginov, Mikhail Y.
    Liao, Rory
    Zeng, Tingying Helen
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 58 - 61
  • [28] Fovea Localization Neural Network for Multimodal Retinal Imaging
    An, Cheolhong
    Wang, Yiqian
    Zhang, Junkang
    Bartsch, Dirk-Uwe G.
    Freeman, William R.
    APPLICATIONS OF MACHINE LEARNING 2020, 2020, 11511
  • [29] Early detection of Alzheimer’s disease using local binary pattern and convolutional neural network
    Ambily Francis
    Immanuel Alex Pandian
    Multimedia Tools and Applications, 2021, 80 : 29585 - 29600
  • [30] Early Diagnosis of Alzheimer's Disease using Convolutional Neural Network-based MRI
    Kadhim, Karrar A.
    Mohamed, Farhan
    Sakran, Ammar AbdRaba
    Adnan, Myasar Mundher
    Salman, Ghalib Ahmed
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (03): : 362 - 368