A Closed-Form Prediction Update for Extended Target Tracking Using Random Matrices

被引:11
|
作者
BartlettO, Nathan James [1 ]
Renton, Christopher [1 ]
Willse, Adrian G. [1 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Callaghan, NSW 2308, Australia
关键词
Extended target; random matrix model; inverse Wishart; non-central inverse Wishart; OBJECT;
D O I
10.1109/TSP.2020.2984390
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new class of state transition models that afford closed-form predictions for the tracking of extended targets. A key innovation is to employ a non-central inverse Wishart distribution to model the state transition density of the target extent. Importantly, this results in a simplified prediction update that is computationally efficient and improves target tracking performance when compared to state-of-the-art alternatives on standard simulation scenarios.
引用
收藏
页码:2404 / 2418
页数:15
相关论文
共 50 条