Cycles of higher-order Collatz sequences

被引:0
|
作者
Simons, John L. [1 ]
机构
[1] Univ Groningen, POB 800, NL-9700 AV Groningen, Netherlands
关键词
Collatz problem; Higher order difference equation; Linear form in logarithms; RATIONAL LINEAR FORM; LOGARITHMS;
D O I
10.7546/nntdm.2022.28.1.48-63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a sequence of numbers x(n) is an element of Z(+) defined by x(n+1) = x(n)/2 if x(n) is even, and x(n+1) = x(n) + 2x(n-1) + q/2 if xn is odd. A 1-cycle is a periodic sequence with one transition from odd to even numbers. We prove theoretical and computational results for the existence of 1-cycles, and discuss a generalization to more complex cycles.
引用
收藏
页码:48 / 63
页数:16
相关论文
共 50 条
  • [21] Bottleneck matchings and Hamiltonian cycles in higher-order Gabriel graphs
    Biniaz, Ahmad
    Maheshwari, Anil
    Smid, Michiel
    [J]. INFORMATION PROCESSING LETTERS, 2020, 153
  • [22] Higher-order hidden Markov models with applications to DNA sequences
    Ching, WK
    Fung, ES
    Ng, MK
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 535 - 539
  • [23] Higher-order Markov chain models for categorical data sequences
    Ching, WK
    Fung, ES
    Ng, MK
    [J]. NAVAL RESEARCH LOGISTICS, 2004, 51 (04) : 557 - 574
  • [24] HIGHER-ORDER ECCENTRICITY CYCLES OF THE MIDDLE AND LATE MIOCENE CLIMATIC VARIATIONS
    TIWARI, RK
    [J]. NATURE, 1987, 327 (6119) : 219 - 221
  • [25] Comparative higher-order risk aversion and higher-order prudence
    Wong, Kit Pong
    [J]. ECONOMICS LETTERS, 2018, 169 : 38 - 42
  • [26] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    [J]. PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [27] A CONSISTENT HIGHER-ORDER THEORY WITHOUT A (HIGHER-ORDER) MODEL
    FORSTER, T
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 385 - 386
  • [28] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    [J]. Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420
  • [29] HIGHER-ORDER OPTIMALITY CONDITIONS AND HIGHER-ORDER TANGENT SETS
    Penot, Jean-Paul
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2508 - 2527
  • [30] Typed higher-order narrowing without higher-order strategies
    Antoy, S
    Tolmach, A
    [J]. FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 1999, 1722 : 335 - 352