Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration

被引:24
|
作者
Liu, Fengyi [1 ,2 ,3 ]
Wang, Xu [1 ,2 ,3 ]
Li, Yuzhou [1 ,2 ,3 ]
Ren, Mingxing [1 ,2 ,3 ]
He, Ping [1 ,2 ,3 ]
Wang, Lu [1 ,2 ,3 ]
Xu, Jie [1 ,2 ,3 ]
Yang, Sheng [1 ,2 ,3 ]
Ji, Ping [1 ,2 ,3 ]
机构
[1] Chongqing Med Univ, Coll Stomatol, Chongqing, Peoples R China
[2] Chongqing Key Lab Oral Dis & Biomed Sci, Chongqing, Peoples R China
[3] Chongqing Municipal Key Lab Oral Biomed Engn High, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartilage regeneration; Stem cell therapy; Injectable hydrogel; GelMA; PAMAM; STEM-CELLS; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; TISSUE; DIFFERENTIATION; REPAIR; SCAFFOLDS; DESIGN;
D O I
10.1186/s13287-022-02705-6
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Adipose-Derived Stromal Cells Promote Allograft Tolerance Induction
    Davis, Thomas A.
    Anam, Khairul
    Lazdun, Yelena
    Gimble, Jeffrey Wi.
    Elster, Eric A.
    STEM CELLS TRANSLATIONAL MEDICINE, 2014, 3 (12) : 1444 - 1450
  • [32] Adipose-derived stem cells for wound repair and regeneration
    Shingyochi, Yoshiaki
    Orbay, Hakan
    Mizunot, Hiroshi
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (09) : 1285 - 1292
  • [33] Adipose-derived stem cells for the regeneration of damaged tissues
    Parker, Anna M.
    Katz, Adam J.
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2006, 6 (06) : 567 - 578
  • [34] Adipose-derived stem cells for wound repair and regeneration
    Mizuno, Hiroshi
    WOUND REPAIR AND REGENERATION, 2009, 17 (01) : A9 - A9
  • [35] Adipose-derived stem cells: A candidate for liver regeneration
    Yang, Dan
    Wang, Zhong Qiong
    Deng, Jia Qi
    Liao, Jing Yuan
    Wang, Xuan
    Xie, Jing
    Deng, Ming Ming
    Lu, Mu Han
    JOURNAL OF DIGESTIVE DISEASES, 2015, 16 (09) : 489 - 498
  • [36] Adipose-derived stem cells in peripheral nerve regeneration
    Leberfinger A.N.
    Ravnic D.J.
    Payne R.
    Rizk E.
    Koduru S.V.
    Hazard S.W., III
    Current Surgery Reports, 5 (2)
  • [37] Periodontal tissue regeneration with adipose-derived stem cells
    Tobita, Morikuni
    Uysal, A. Cagri
    Ogawa, Rei
    Hyakusoku, Hiko
    Mizuno, Hiroshi
    TISSUE ENGINEERING PART A, 2008, 14 (06) : 945 - 953
  • [38] Hair regeneration using adipose-derived stem cells
    Jin, Su-Eon
    Sung, Jong-Hyuk
    HISTOLOGY AND HISTOPATHOLOGY, 2016, 31 (03) : 249 - 256
  • [39] Human Adipose-Derived Stem/Stromal Cells Promote Proliferation and Migration in Head and Neck Cancer Cells
    Sharaf, Kariem
    Eggersmann, Tanja K.
    Haider, Stefan P.
    Schwenk-Zieger, Sabina
    Zhou, Jiefu
    Gires, Olivier
    Lechner, Axel
    Canis, Martin
    Haubner, Frank
    CANCERS, 2021, 13 (11)
  • [40] Adipose-derived stem cells modified genetically in vivo promote reconstruction of bone defects
    Chen, Qiang
    Yang, Zailiang
    Sun, Shijin
    Huang, Hong
    Sun, Xinjun
    Wang, Zhengguo
    Zhang, Yong
    Zhang, Bo
    CYTOTHERAPY, 2010, 12 (06) : 831 - 840