Solving variational inequalities with a quadratic cut method: a primal-dual, Jacobian-free approach

被引:1
|
作者
Denault, M
Goffin, JL
机构
[1] HEC Montreal, Gerad, Montreal, PQ H3T 2A7, Canada
[2] McGill Univ, Gerad, Montreal, PQ H3T 2A7, Canada
关键词
variational inequalities; analytic center cutting plane method; quadratic cuts; markal-macro model; greenhouse gases; emissions trading;
D O I
10.1016/S0305-0548(03)00032-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend in two directions the Analytic Center, Cutting Plane Method for Variational Inequalities with quadratic cuts, ACCPM-VI(quadratic cuts), introduced by Denault and Goffin in 1998. First, we define a primal-dual method to find the analytic center at each iteration. Second, the Broyden-Fletcher-Goldfarb-Shanno Jacobian approximation, of quasi-Newton fame, is used in the definition of the cuts, making the algorithm applicable to problems without tractable Jacobians. The algorithm is tested on a variety of variational inequality problems, including one challenging problem of pricing the pollution permits put forward in the Kyoto Protocol. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:721 / 743
页数:23
相关论文
共 50 条
  • [21] A Lagrangian dual method for solving variational inequalities
    Stefanov, SM
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 597 - 608
  • [22] Primal-dual potential reduction method for problems involving matrix inequalities
    Katholielie Universiteit Leuven, Leuven, Belgium
    Math Program Ser B, 1 (205-236):
  • [23] A PRIMAL-DUAL POTENTIAL REDUCTION METHOD FOR PROBLEMS INVOLVING MATRIX INEQUALITIES
    VANDENBERGHE, L
    BOYD, S
    MATHEMATICAL PROGRAMMING, 1995, 69 (01) : 205 - 236
  • [24] Solving Nonlinear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method
    Hales, J. D.
    Novascone, S. R.
    Williamson, R. L.
    Gaston, D. R.
    Tonks, M. R.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 84 (02): : 123 - 153
  • [25] A primal-dual approach for solving conservation laws with implicit in time approximations
    Liu, Siting
    Osher, Stanley
    Li, Wuchen
    Shu, Chi -Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [26] SOLVING A CLASS OF LP PROBLEMS WITH A PRIMAL-DUAL LOGARITHMIC BARRIER METHOD
    GONDZIO, J
    MAKOWSKI, M
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 80 (01) : 184 - 192
  • [27] On implementing a primal-dual interior-point method for conic quadratic optimization
    E.D. Andersen
    C. Roos
    T. Terlaky
    Mathematical Programming, 2003, 95 : 249 - 277
  • [28] A new primal-dual path-following method for convex quadratic programming
    Achache, Mohamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2006, 25 (01): : 97 - 110
  • [29] A primal-dual interior point method for high precision solutions of quadratic programming
    Gonzalez-Lima, Maria D.
    Oliveira, Aurelio R. L.
    Oliveira, Danilo E.
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2024, 12 (01): : 161 - 193
  • [30] On implementing a primal-dual interior-point method for conic quadratic optimization
    Andersen, ED
    Roos, C
    Terlaky, T
    MATHEMATICAL PROGRAMMING, 2003, 95 (02) : 249 - 277