On two new contractions and discontinuity on fixed points

被引:5
|
作者
Zhou, Mi [1 ]
Saleem, Naeem [2 ]
Liu, Xiao-lan [3 ,4 ,5 ]
Ozgur, Nihal [6 ]
机构
[1] Univ Sanya, Sch Sci & Technol, Sanya 572000, Hainan, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
[3] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Sichuan, Peoples R China
[4] Key Lab Higher Educ Sichuan Prov Enterprise Infor, Zigong 643000, Sichuan, Peoples R China
[5] South Sichuan Ctr Appl Math, Zigong 643000, Sichuan, Peoples R China
[6] Balikesir Univ, Dept Math, TR-10145 Balikesir, Turkey
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
fixed point; (psi; phi)-A-contraction; phi)-A; '-contraction; discontinuity at the fixed point; F-CONTRACTIONS; DEFINITIONS; MAPPINGS;
D O I
10.3934/math.2022095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71-76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233-245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called (psi, phi)-A-contraction and (psi, phi)-A'-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33-54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.
引用
收藏
页码:1628 / 1663
页数:36
相关论文
共 50 条
  • [41] CONTRACTIONS WITH FIXED-POINTS AND CONDITIONAL EXPECTATION
    ALHUSSAINI, AN
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (04): : 475 - 478
  • [42] Iterative approximation of fixed points of almost contractions
    Berinde, Vasile
    Pacurar, Madalina
    NINTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 387 - +
  • [43] On the existence and the uniqueness of fixed points of Sehgal contractions
    Mihet, D
    FUZZY SETS AND SYSTEMS, 2005, 156 (01) : 135 - 141
  • [44] Fixed Points of Multivalued Nonself Almost Contractions
    Alghamdi, Maryam A.
    Berinde, Vasile
    Shahzad, Naseer
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [45] A BETTER ESTIMATE FOR FIXED-POINTS OF CONTRACTIONS
    NEUMAIER, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (11): : 627 - 627
  • [46] Fixed points of (ψ, φ) contractions on rectangular metric spaces
    Erhan, Inci M.
    Karapinar, Erdal
    Sekulic, Tanja
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [47] Approximate fixed points of generalized convex contractions
    Miandaragh, Mehdi Amir
    Postolache, Mihai
    Rezapour, Shahram
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [48] Fixed points of convex and generalized convex contractions
    Ravindra K. Bisht
    Vladimir Rakočević
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 21 - 28
  • [49] Fixed Points of Proinov E-Contractions
    Alghamdi, Maryam A.
    Gulyaz-Ozyurt, Selma
    Fulga, Andreea
    SYMMETRY-BASEL, 2021, 13 (06):
  • [50] Fixed points of convex and generalized convex contractions
    Bisht, Ravindra K.
    Rakocevic, Vladimir
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 21 - 28