Some New Weighted Estimates on Product Spaces

被引:0
|
作者
Airta, Emil [1 ]
LI, Kangwei [2 ]
Martikainen, Henri [1 ,3 ]
Vuorinen, Emil [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
[2] Tianjin Univ, Ctr Appl Math, Weijin Rd 92, Tianjin 300072, Peoples R China
[3] Washington Univ, Dept Math & Stat, 1 Brookings Dr, St Louis, MO 63130 USA
关键词
Bilinear analysis; bi-parameter analysis; model operators; weighted estimates; SINGULAR-INTEGRALS; EXTRAPOLATION; REPRESENTATION; INEQUALITIES; OPERATORS; BMO;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete our theory of weighted L-p (w(1)) x L-q (w(2)) -> L-r (w(1)(r/p) w(2)(r/q)) estimates for bilinear bi-parameter Calderon-Zygmund operators under the assumption that w(1) is an element of A(p) and w(2 )is an element of A(q) are bi-parameter weights. This is done by lifting a previous restriction on the class of singular integrals by extending a classical result of Muckenhoupt and Wheeden regarding weighted BMO spaces to the product BMO setting. We use this extension of the Muckenhoupt-Wheeden result also to generalise some two-weight commutator estimates from biparameter to multi-parameter. This gives a fully satisfactory Bloom-type upper estimate for [T-1, [T-2, ...[b,T-k]]], where each T-i can be a completely general multi-parameter Calderon-Zygmund operator.
引用
收藏
页码:37 / 63
页数:27
相关论文
共 50 条