Desynchronization bifurcation of coupled nonlinear dynamical systems

被引:2
|
作者
Acharyya, Suman [1 ]
Amritkar, R. E. [1 ]
机构
[1] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
关键词
GENERALIZED SYNCHRONIZATION; PHASE SYNCHRONIZATION; STABILITY THEORY; CHAOS; TRANSITION; MOTION;
D O I
10.1063/1.3581154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the desynchronization bifurcation in the coupled Rossler oscillators. After the bifurcation the coupled oscillators move away from each other with a square root dependence on the parameter. We define system transverse Lyapunov exponents (STLE), and in the desynchronized state one is positive while the other is negative. We give a simple model of coupled integrable systems with quadratic nonlinearity that shows a similar phenomenon. We conclude that desynchronization is a pitchfork bifurcation of the transverse manifold. Cubic nonlinearity also shows the bifurcation, but in this case the STLEs are both negative. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581154]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Desynchronization and chaotification of nonlinear dynamical systems
    Codreanu, S
    CHAOS SOLITONS & FRACTALS, 2002, 13 (04) : 839 - 843
  • [2] Bifurcation of switched nonlinear dynamical systems
    Ueta, T
    Kousaka, T
    Kawakami, H
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B465 - B468
  • [3] Bifurcation of switched nonlinear dynamical systems
    Kousaka, T
    Ueta, T
    Kawakami, H
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, 46 (07): : 878 - 885
  • [4] Controlling Hopf bifurcation of nonlinear dynamical systems
    Li, CP
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 891 - 898
  • [5] An application of chaos and bifurcation in nonlinear dynamical power systems
    Kuru, L
    Kuru, E
    Yalçin, MA
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOL 3, STUDENT SESSIONS, PROCEEDINGS, 2004, : 11 - 15
  • [6] Hybrid control of bifurcation in continuous nonlinear dynamical systems
    Liu, ZR
    Chung, KW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (12): : 3895 - 3903
  • [7] Effect of noise on the bifurcation behavior of nonlinear dynamical systems
    Serletis, Apostolos
    Shahmoradi, Asghar
    Serletis, Demitre
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 914 - 921
  • [8] Hopf bifurcation control in a coupled nonlinear relative rotation dynamical system
    Liu Shuang
    Liu Hao-Ran
    Wen Yan
    Liu Bin
    ACTA PHYSICA SINICA, 2010, 59 (08) : 5223 - 5228
  • [9] Dynamical complexity, bifurcation and chaos control for coupled nonlinear laser system
    Fang, JQ
    Zhao, G
    Zhou, LL
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, : 89 - 97
  • [10] Nonlinear behaviors as well as the bifurcation mechanism in switched dynamical systems
    Zhang, Ran
    Wang, Yu
    Zhang, Zhengdi
    Bi, Qinsheng
    NONLINEAR DYNAMICS, 2015, 79 (01) : 465 - 471