Hybrid control of bifurcation in continuous nonlinear dynamical systems

被引:25
|
作者
Liu, ZR
Chung, KW
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Shanghai Univ, Ctr Nonlinear Sci, Shanghai 200436, Peoples R China
[3] Shanghai Jiao Tong Univ, Aetna Sch Management, Shanghai 200052, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
hybrid control; Hopf bifurcation; Poincare bifurcation; chaos;
D O I
10.1142/S0218127405014374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new hybrid control strategy is proposed, in which state feedback and parameter perturbation are used to control the bifurcations of continuous dynamical systems. The hybrid control can be applied to any component of a several dimensional dynamical system and is still effective even when the system becomes chaotic. Our results show, that various bifurcations, such as Hopf bifurcation and Poincare bifurcation, can be controlled by means of this method.
引用
收藏
页码:3895 / 3903
页数:9
相关论文
共 50 条
  • [1] Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems
    Luo, XS
    Chen, GR
    Wang, BH
    Fang, JQ
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 18 (04) : 775 - 783
  • [2] Bifurcation of switched nonlinear dynamical systems
    Kousaka, T
    Ueta, T
    Kawakami, H
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, 46 (07): : 878 - 885
  • [3] Bifurcation of switched nonlinear dynamical systems
    Ueta, T
    Kousaka, T
    Kawakami, H
    [J]. ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B465 - B468
  • [4] Bifurcation analysis of hybrid dynamical systems
    Chen, L
    Aihara, K
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 857 - 862
  • [5] Hybrid cascade control for a class of nonlinear dynamical systems
    Campos-Rodriguez, A.
    Garcia-Sandoval, J. P.
    Gonzalez-Alvarez, V.
    Gonzalez-Alvarez, A.
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 76 : 141 - 154
  • [6] Hybrid adaptive control for nonlinear impulsive dynamical systems
    Haddad, WM
    Hayakawa, T
    Nersesov, SG
    Chellaboina, V
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 5110 - 5115
  • [7] Controlling Hopf bifurcation of nonlinear dynamical systems
    Li, CP
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 891 - 898
  • [8] Desynchronization bifurcation of coupled nonlinear dynamical systems
    Acharyya, Suman
    Amritkar, R. E.
    [J]. CHAOS, 2011, 21 (02)
  • [9] Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems
    Wang, CH
    Lin, TC
    Lee, TT
    Liu, HL
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (05): : 583 - 597
  • [10] Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications
    Buss, M
    Glocker, M
    Hardt, M
    von Stryk, O
    Bulirsch, R
    Schmidt, G
    [J]. MODELLING, ANALYSIS, AND DESIGN OF HYBRID SYSTEMS, 2002, 279 : 311 - 335