Copula-Based Prediction of Economic Movements

被引:0
|
作者
Garcia, J. E. [1 ]
Gonzalez-Lopez, V. A. [1 ]
Hirsh, I. D. [2 ]
机构
[1] Univ Estadual Campinas, Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] BM & FBOVESPA, Praca Antonio Prado 48, BR-01010010 Sao Paulo, SP, Brazil
关键词
Partition Markov Models; Inference Methods; Copula for Discrete Data;
D O I
10.1063/1.4951928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] COBra: Copula-Based Portfolio Optimization
    Paolella, Marc S.
    Polak, Pawe L.
    [J]. PREDICTIVE ECONOMETRICS AND BIG DATA, 2018, 753 : 36 - 77
  • [22] Copula-Based Fusion of Correlated Decisions
    Sundaresan, Ashok
    Varshney, Pramod K.
    Rao, Nageswara S. V.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (01) : 454 - 471
  • [23] Copula-based conditional tail indices
    Coia, Vincenzo
    Joe, Harry
    Nolde, Natalia
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 201
  • [24] Dynamic copula-based expectile portfolios
    Maziar Sahamkhadam
    [J]. Journal of Asset Management, 2021, 22 : 209 - 223
  • [25] A copula-based approximation to Markov chains
    Zhengyong Zhou
    Jiehua Xie
    Jingping Yang
    [J]. Science China Mathematics, 2022, 65 (03) : 623 - 654
  • [26] A copula-based portrayal of the collider bias
    Hu, Anning
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (02): : 471 - 512
  • [27] Dynamic copula-based expectile portfolios
    Sahamkhadam, Maziar
    [J]. JOURNAL OF ASSET MANAGEMENT, 2021, 22 (03) : 209 - 223
  • [28] Hierarchical copula-based distributed detection
    Javadi, S. Hamed
    Mohammadi, Abdolreza
    Farina, Alfonso
    [J]. SIGNAL PROCESSING, 2019, 158 : 100 - 106
  • [29] A copula-based partition Markov procedure
    Fernandez, M.
    Garcia, Jesus E.
    Gonzalez-Lopez, V. A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (14) : 3408 - 3417
  • [30] Copula-based regression models: A survey
    Kolev, Nikolai
    Paiva, Delhi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (11) : 3847 - 3856