Mental tasks classiflcation and their EEG structures analysis by using the growing hierarchical self-organizing map

被引:0
|
作者
Liu, HL [1 ]
Wang, J [1 ]
Zheng, CX [1 ]
机构
[1] Xian Jiaotong Univ, Key Lab Biomed Informat Engn Educ Minist, Xian 710049, Peoples R China
关键词
Brain-Computer Interface (BCI); electroencephalogram (EEG); mental tasks classification; GHSOM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The unsupervised method of Growing Hierarchical Self-Organizing Map (GHSOM) was used to perform mental tasks classification. The GHSOM is an adaptive artificial neural network model with hierarchical architecture that is able to detect the hierarchical structure of data. The results indicate that GHSOM provides more detailed clustering information than SOM, and gives visual information about the separability of mental tasks in an intuitive way. The average classification accuracy across 130 task pairs by using GHSOM was up to 96.7%.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 50 条
  • [31] Classification of Protein Sequences using the Growing Self-Organizing Map
    Ahmad, Norashikin
    Alahakoon, Damminda
    Chau, Rowena
    2008 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2008, : 287 - +
  • [32] Network Security Using Growing Hierarchical Self-Organizing Maps
    Palomo, E. J.
    Dominguez, E.
    Luque, R. M.
    Munoz, J.
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 130 - 139
  • [33] Multiscale image segmentation using a hierarchical self-organizing map
    Bhandarkar, SM
    Koh, J
    Suk, M
    NEUROCOMPUTING, 1997, 14 (03) : 241 - 272
  • [34] Multiscale image segmentation using a hierarchical self-organizing map
    Bhandarkar, Suchendra M.
    Koh, Jean
    Suk, Minsoo
    Neurocomputing, 14 (03): : 241 - 272
  • [35] A supervised self-organizing map for structures
    Hagenbuchner, M
    Tsoi, AC
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1923 - 1928
  • [36] Growing Hierarchical Probabilistic Self-Organizing Graphs
    Lopez-Rubio, Ezequiel
    Jose Palomo, Esteban
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (07): : 997 - 1008
  • [37] Fuzzy Growing Hierarchical Self-Organizing Networks
    Barreto-Sanz, Miguel
    Perez-Uribe, Andres
    Pena-Reyes, Carlos-Andres
    Tomassini, Marco
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 713 - +
  • [38] Reliable hierarchical clustering with the self-organizing map
    Samsonova, EV
    Bäck, T
    Kok, JN
    IJzerman, AP
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 385 - 396
  • [39] Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map
    Hong, Y.
    Chiang, Y. -M.
    Liu, Y.
    Hsu, K. -L.
    Sorooshian, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (23-24) : 5165 - 5184
  • [40] Robust Growing Hierarchical Self Organizing Map
    Moreno, S
    Allende, H
    Rogel, C
    Salas, R
    COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 341 - 348