Reversibility and irreversibility in quantum computation and in quantum computational logics
被引:0
|
作者:
Chiara, Maria Luisa Dalla
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dipartimento Filosofia, Via Bolognese 52, I-50139 Florence, ItalyUniv Florence, Dipartimento Filosofia, Via Bolognese 52, I-50139 Florence, Italy
Chiara, Maria Luisa Dalla
[1
]
论文数: 引用数:
h-index:
机构:
Giuntini, Roberto
[2
]
Leporini, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergamo, Dipartimento Matemat, Dipartimento Stat, Dipartimento Informat & Applicaz, I-24127 Bergamo, ItalyUniv Florence, Dipartimento Filosofia, Via Bolognese 52, I-50139 Florence, Italy
Leporini, Roberto
[3
]
机构:
[1] Univ Florence, Dipartimento Filosofia, Via Bolognese 52, I-50139 Florence, Italy
[2] Univ Cagliari, Dipartimento Sci Pedagogiche Filosofiche, I-09123 Cagliari, Italy
[3] Univ Bergamo, Dipartimento Matemat, Dipartimento Stat, Dipartimento Informat & Applicaz, I-24127 Bergamo, Italy
A characteristic feature of quantum computation is the use of reversible logical operations. These correspond to quantum logical gates that are mathematically represented by unitary operators defined on convenient Hilbert spaces. Two questions arise: 1) to what extent is quantum computation bound to the use of reversible logical operations? 2) How to identify the logical operations that admit a quantum computational simulation by means of appropriate gates? We introduce the notion of quantum computational simulation of a binary function defined on the real interval [0, 1], and we prove that for any binary Boolean function there exists a unique fuzzy extension admitting a quantum computational simulation. As a consequence, the Lukasiewicz conjunction and disjunction do not admit a quantum computational simulation.