Design of biodegradable, implantable devices towards clinical translation

被引:532
|
作者
Li, Chunmei [1 ]
Guo, Chengchen [1 ]
Fitzpatrick, Vincent [1 ]
Ibrahim, Ahmed [2 ,3 ]
Zwierstra, Myrthe Jasmijn [2 ,3 ]
Hanna, Philip [4 ]
Lechtig, Aron [4 ]
Nazarian, Ara [4 ,5 ]
Lin, Samuel J. [2 ,3 ]
Kaplan, David L. [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Plast Surg, Boston, MA 02115 USA
[3] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Otolaryngol, Boston, MA 02115 USA
[4] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Adv Orthopaed Studies, Boston, MA 02115 USA
[5] Yerevan State Med Univ, Dept Orthopaed Surg, Yerevan, Armenia
关键词
FOREIGN-BODY REACTION; IN-VIVO DEGRADATION; SILK-BASED BIOMATERIALS; L-LACTIDE PLLA; EXTRACELLULAR-MATRIX; MACROPHAGE PHENOTYPE; TISSUE-RESPONSE; BIOLOGIC SCAFFOLDS; SILICON NANOMEMBRANES; REGENERATIVE MEDICINE;
D O I
10.1038/s41578-019-0150-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Clinical outcomes with implantable and degradable devices largely depend on host response. This Review surveys material options and degradation mechanisms relevant to host responses to biodegradable devices, examines clinical translation of leading biodegradable materials and proposes updated material-design strategies to improve device performance. Biodegradable materials, including natural and synthetic polymers and hydrolyzable metals, constitute the main components of temporary, implantable medical devices. Besides the intrinsic properties of the materials, the most critical factor determining the successful clinical outcome of implantable and degradable devices is the host response, particularly the immune response, which largely depends on the material features and degradation mechanisms. In this Review, we first survey the state of the art in terms of materials options for use in biodegradable medical devices, focusing on degradation mechanisms and their control. In particular, we highlight silk, which is emerging as an important polymer, owing to its mechanical robustness, bioactive component sequestration, degradability without problematic metabolic products and biocompatibility. We then discuss the host response to these biodegradable materials in terms of dynamic tissue-implant interfaces. Next, we examine the clinical translation of three leading biodegradable material systems - natural and synthetic biodegradable polymers and biodegradable metals - and the related challenges in the context of orthopaedic fixation devices, cardiovascular stents and biodegradable electronic devices. Looking to the future, we propose updated material design strategies to improve the clinical outcomes for these biodegradable medical devices.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [21] Design Challenges for Secure Implantable Medical Devices
    Burleson, Wayne
    Clark, Shane S.
    Ransford, Benjamin
    Fu, Kevin
    2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2012, : 12 - 17
  • [22] Three-dimensional microfabrication system toward advanced biodegradable implantable devices
    Yamada, A
    Niikura, F
    Ikuta, K
    2005 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS, 2005, : 114 - 117
  • [23] Biodegradable Implantable Microsystems
    Park, J.
    Brugger, J.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [24] Implantable and biodegradable biobattery
    Hawkins, Harrison
    Filardi, Leah
    Ellis, Ethan
    Lawless-Gattone, Alexis
    Pletscher, John
    Istrefi, Migjen
    Boyd, Lucas
    Kapetanakis, Andrew
    Jacobucci, Colton
    Noshadi, Iman
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [25] Current status and outlook on the clinical translation of biodegradable metals
    Han, Hyung-Seop
    Loffredo, Sergio
    Jun, Indong
    Edwards, James
    Kim, Yu-Chan
    Seok, Hyun-Kwang
    Witte, Frank
    Mantovani, Diego
    Glyn-Jones, Sion
    MATERIALS TODAY, 2019, 23 : 57 - 71
  • [26] Telemonitoring of implantable cardiac devices: hurdles towards personalised medicine
    Heidbuchel, Hein
    HEART, 2011, 97 (11) : 931 - 939
  • [27] A Lamb wave magnetoelectric antenna design for implantable devices
    Zheng, Ruoda
    Estrada, Victor
    Virushabadoss, Nishanth
    Will-Cole, Alexandria
    Acosta, Adrian
    Hu, Jinzhao
    Yan, Wenzhong
    Chang, Jane P.
    Sun, Nian X.
    Henderson, Rashaunda
    Carman, Gregory P.
    Sepulveda, Abdon E.
    APPLIED PHYSICS LETTERS, 2023, 122 (20)
  • [28] Developing a thrombogenicity probe for the design of hemocompatible implantable devices
    Nielsen, Sarah A.
    Renzullo, Mario
    Balss, Karin M.
    Maryanoff, Cynthia A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [29] A Dual Band Antenna Design for Implantable Medical Devices
    Alptekin, Damla
    Gencer, Nevzat Guneri
    Kucukdeveci, Fikret
    2014 18TH NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT), 2014,
  • [30] Design of a phantom head for the in vitro testing of implantable devices
    Riley, Laura E.
    Hackworth, Steven A.
    Henry, Christopher
    Sun, Mingui
    Sclabassi, Robert J.
    Hirsch, David
    2007 IEEE 33RD ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2007, : 296 - +