Design of biodegradable, implantable devices towards clinical translation

被引:532
|
作者
Li, Chunmei [1 ]
Guo, Chengchen [1 ]
Fitzpatrick, Vincent [1 ]
Ibrahim, Ahmed [2 ,3 ]
Zwierstra, Myrthe Jasmijn [2 ,3 ]
Hanna, Philip [4 ]
Lechtig, Aron [4 ]
Nazarian, Ara [4 ,5 ]
Lin, Samuel J. [2 ,3 ]
Kaplan, David L. [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Plast Surg, Boston, MA 02115 USA
[3] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Otolaryngol, Boston, MA 02115 USA
[4] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Adv Orthopaed Studies, Boston, MA 02115 USA
[5] Yerevan State Med Univ, Dept Orthopaed Surg, Yerevan, Armenia
关键词
FOREIGN-BODY REACTION; IN-VIVO DEGRADATION; SILK-BASED BIOMATERIALS; L-LACTIDE PLLA; EXTRACELLULAR-MATRIX; MACROPHAGE PHENOTYPE; TISSUE-RESPONSE; BIOLOGIC SCAFFOLDS; SILICON NANOMEMBRANES; REGENERATIVE MEDICINE;
D O I
10.1038/s41578-019-0150-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Clinical outcomes with implantable and degradable devices largely depend on host response. This Review surveys material options and degradation mechanisms relevant to host responses to biodegradable devices, examines clinical translation of leading biodegradable materials and proposes updated material-design strategies to improve device performance. Biodegradable materials, including natural and synthetic polymers and hydrolyzable metals, constitute the main components of temporary, implantable medical devices. Besides the intrinsic properties of the materials, the most critical factor determining the successful clinical outcome of implantable and degradable devices is the host response, particularly the immune response, which largely depends on the material features and degradation mechanisms. In this Review, we first survey the state of the art in terms of materials options for use in biodegradable medical devices, focusing on degradation mechanisms and their control. In particular, we highlight silk, which is emerging as an important polymer, owing to its mechanical robustness, bioactive component sequestration, degradability without problematic metabolic products and biocompatibility. We then discuss the host response to these biodegradable materials in terms of dynamic tissue-implant interfaces. Next, we examine the clinical translation of three leading biodegradable material systems - natural and synthetic biodegradable polymers and biodegradable metals - and the related challenges in the context of orthopaedic fixation devices, cardiovascular stents and biodegradable electronic devices. Looking to the future, we propose updated material design strategies to improve the clinical outcomes for these biodegradable medical devices.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [1] Design of biodegradable, implantable devices towards clinical translation
    Chunmei Li
    Chengchen Guo
    Vincent Fitzpatrick
    Ahmed Ibrahim
    Myrthe Jasmijn Zwierstra
    Philip Hanna
    Aron Lechtig
    Ara Nazarian
    Samuel J. Lin
    David L. Kaplan
    Nature Reviews Materials, 2020, 5 : 61 - 81
  • [2] Biodegradable synthetic polymers for the design of implantable medical devices: the ligamentoplasty case
    Garric, Xavier
    Nottelet, Benjamin
    Pinese, Coline
    Leroy, Adrien
    Coudane, Jean
    M S-MEDECINE SCIENCES, 2017, 33 (01): : 39 - 45
  • [3] Antifouling strategies of biodegradable polyurethane for implantable biomedical devices
    Wang, Huifeng
    Fattahpour, Seyyedfaridoddin
    Christiansen, Daniel
    Cheng, Gang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Synthetic biodegradable polyesters for implantable controlled-release devices
    Pothupitiya, Jinal U.
    Zheng, Christy
    Saltzman, W. Mark
    EXPERT OPINION ON DRUG DELIVERY, 2022, 19 (10) : 1351 - 1364
  • [5] Implantable and biodegradable closed-loop devices for autonomous electrotherapy
    Zhang, Xiaoying
    Mehvish, Darakhshan
    Yang, Hui
    SMARTMAT, 2023, 4 (03):
  • [6] Recent advances in biodegradable implantable electrochemical energy storage devices
    Ma Y.
    Sheng H.
    Zhang H.
    Lan W.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2024, 54 (05): : 786 - 802
  • [7] Materials Perspectives for Self-Powered Cardiac Implantable Electronic Devices toward Clinical Translation
    Li, Jun
    Wang, Xudong
    ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (09): : 739 - 750
  • [8] Towards principled design of cancer nanomedicine to accelerate clinical translation
    Souri, Mohammad
    Soltani, M.
    Kashkooli, Farshad Moradi
    Shahvandi, Mohammad Kiani
    Chiani, Mohsen
    Shariati, Fatemeh Sadat
    Mehrabi, Mohammad Reza
    Munn, Lance L.
    MATERIALS TODAY BIO, 2022, 13
  • [9] Rational nanocarrier design towards clinical translation of cancer nanotherapy
    Guo, Dandan
    Ji, Xiaotian
    Luo, Juntao
    BIOMEDICAL MATERIALS, 2021, 16 (03)
  • [10] Antennas Design for Implantable Medical Devices
    Xiao, S. Q.
    Li, R. Q.
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 61 - 63