Low power digital neuron for SOM implementations

被引:0
|
作者
Cambio, R [1 ]
Hendry, DC [1 ]
机构
[1] Univ Aberdeen, Sch Engn & Phys Sci, Kings Coll, Aberdeen AB24 3UE, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As applications of the Self-Organising Map emerge in portable devices, power dissipation becomes a crucial design issue. The digital implementation of the SOM which is introduced in this paper meets low power requirements by means of increasing silicon area while reducing the number of clock cycles required to process each element of an input vector. Designs of a single neuron requiring two clock cycles, one clock cycle, and 1/2 clock cycle per element of the input vector are presented. The designs offer a reduction in power of a factor of 3 for an increase in silicon area of some 33%. The contribution of each routine composing training and classification to total power is also illustrated.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 50 条
  • [21] A comparison of analog and digital circuit implementations of low power matched filters for use in portable wireless communication terminals
    Hahm, MD
    Friedman, EG
    Titlebaum, EL
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 1997, 44 (06) : 498 - 506
  • [22] Simple Low Voltage, Low Power Implementations of Circuits for VT Extraction
    Ramirez-Angulo, Jaime
    Kasaraneni, Venkata Sailaja
    Carvajal, Ramon G.
    Lopez-Martin, Antonio J.
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1133 - 1136
  • [23] Low power hardware implementations for network packet processing elements
    Basiri, Mohamed Asan M.
    Shukla, Sandeep K.
    INTEGRATION-THE VLSI JOURNAL, 2018, 62 : 170 - 181
  • [24] Design Study of Efficient Digital Order-Based STDP Neuron Implementations for Extracting Temporal Features
    Roclin, David
    Bichler, Olivier
    Gamrat, Christian
    Thorpe, Simon J.
    Klein, Jacques-Olivier
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [25] Multiradix Trivium Implementations for Low-Power IoT Hardware
    Mora-Gutierrez, J. M.
    Jimenez-Fernandez, C. J.
    Valencia-Barrero, M.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (12) : 3401 - 3405
  • [26] A Resonant Controller with Robust Features for Digital Implementations at Low Sampling Frequency
    Karimi-Ghartemani, Masoud
    Khajehoddin, Sayed Ali
    Mojiri, Mohsen
    Jain, Praveen
    Bakhshai, Alireza
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 5910 - 5915
  • [27] Reducing complexity of FIR filter implementations for low power applications
    DeBrunner, Linda S.
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 1407 - 1411
  • [28] Chaotic neuron models and their VLSI circuit implementations
    Hsu, CC
    Gobovic, D
    Zaghloul, ME
    Szu, HH
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (06): : 1339 - 1350
  • [29] MESO Neuron: A Low-Power and Ultrafast Spin Neuron for Neuromorphic Computing
    Zeng, Junwei
    Chen, Yabo
    Liu, Jiahao
    Huang, Chenglong
    Xu, Nuo
    Li, Cheng
    Fang, Liang
    IEEE MAGNETICS LETTERS, 2022, 13
  • [30] Low power high-speed neuron MOS digital-to-analog converters with minimal silicon area
    Rantala A.
    Kuivalainen P.
    Åberg M.
    Analog Integrated Circuits and Signal Processing, 2001, 26 (26) : 53 - 61