Entanglement in Non-local Games and the Hyperlinear Profile of Groups

被引:9
|
作者
Slofstra, William [1 ]
Vidick, Thomas [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Inst Quantum Comp, Waterloo, ON, Canada
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 10期
关键词
BELL INEQUALITIES;
D O I
10.1007/s00023-018-0718-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We relate the amount of entanglement required to play linear system non-local games near-optimally to the hyperlinear profile of finitely presented groups. By calculating the hyperlinear profile of a certain group, we give an example of a finite non-local game for which the amount of entanglement required to play -optimally is at least O(1/ k), for some k > 0. Since this function approaches infinity as approaches zero, this provides a quantitative version of a theorem of the first author.
引用
收藏
页码:2979 / 3005
页数:27
相关论文
共 50 条
  • [21] Symmetry-resolved entanglement entropy for local and non-local QFTs
    Pirmoradian, Reza
    Tanhayi, M. Reza
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (08):
  • [22] Local and non-local properties of the entanglement Hamiltonian for two disjoint intervals
    Eisler, Viktor
    Tonni, Erik
    Peschel, Ingo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (08):
  • [23] Quantum No-signalling Correlations and Non-local Games
    Todorov, Ivan G.
    Turowska, Lyudmila
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (06)
  • [24] Experimental Non-Local Generation of Entanglement from Independent Sources
    Jin Xian-Min
    Juegen, Roech
    Yin Juan
    Yang Tao
    [J]. CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [25] Probabilistic implementation of non-local CNOT operation and entanglement purification
    Zheng, YZ
    Ye, P
    Guo, GC
    [J]. CHINESE PHYSICS LETTERS, 2004, 21 (01) : 9 - 11
  • [26] Aspects of entanglement in non-local field theories with fractional Laplacian
    Pratim Roy
    [J]. Journal of High Energy Physics, 2022
  • [27] Fermionic computation is non-local tomographic and violates monogamy of entanglement
    D'Ariano, G. M.
    Manessi, F.
    Perinotti, P.
    Tosini, A.
    [J]. EPL, 2014, 107 (02)
  • [28] Non-local probes of entanglement in the scale-invariant gravity
    Pirmoradian, R.
    Tanhayi, M. Reza
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [29] Aspects of entanglement in non-local field theories with fractional Laplacian
    Roy, Pratim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [30] NON-LOCAL FIELD AND NON-LOCAL INTERACTION
    KATAYAMA, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (03): : 381 - 382