Improving L-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering

被引:10
|
作者
Iranmanesh, Elham [1 ]
Asadollahi, Mohammad Ali [1 ]
Biria, Davoud [1 ]
机构
[1] Univ Isfahan, Fac Adv Sci & Technol, Dept Biotechnol, Esfahan 8174673441, Iran
关键词
Metabolic engineering; L-phenylacetylcarbinol; Saccharomyces cerevisiae; Flux balance analysis; OptGene; (R)-PHENYLACETYLCARBINOL PRODUCTION; PYRUVATE DECARBOXYLASE; YEAST; BENZALDEHYDE; BIOTRANSFORMATION; CARBINOL; ENZYMES; RECONSTRUCTION; BIOSYNTHESIS; PREDICTION;
D O I
10.1016/j.jbiotec.2019.11.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
L-Phenylacetylcarbinol (L-PAC) which is used as a precursor for the production of ephedrine and pseudoephedrine is the first reported biologically produced a-hydroxy ketone compound. L-PAC is commercially produced by the yeast Saccharomyces cerevisiae. Yeast cells transform exogenously added benzaldehyde into L-PAC by using the action of pyruvate decarboxylase (PDC) enzyme. In this work, genome-scale model and flux balance analysis were used to identify novel target genes for the enhancement of L-PAC production in yeast. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene and minimization of metabolic adjustments. Six single gene deletion strains, namely Delta rpe1, Delta pda1, Delta adh3, Delta adh1, Delta zwf1 and Delta pdc1, were predicted in silico and further tested in vivo by using knock-out strains cultivated semi-anaerobically on glucose and benzaldehyde as substrates. Delta zwf1 mutant exhibited the highest L-PAC formation (2.48 g/L) by using 2 g/L of benzaldehyde which is equivalent to 88 % of the theoretical yield.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [21] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Pegah Amiri
    Azar Shahpiri
    Mohammad Ali Asadollahi
    Fariborz Momenbeik
    Siavash Partow
    Biotechnology Letters, 2016, 38 : 503 - 508
  • [22] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Amiri, Pegah
    Shahpiri, Azar
    Asadollahi, Mohammad Ali
    Momenbeik, Fariborz
    Partow, Siavash
    BIOTECHNOLOGY LETTERS, 2016, 38 (03) : 503 - 508
  • [23] Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid
    Nobuhiro Ishida
    Satoshi Saitoh
    Toru Ohnishi
    Kenro Tokuhiro
    Eiji Nagamori
    Katsuhiko Kitamoto
    Haruo Takahashi
    Applied Biochemistry and Biotechnology, 2006, 131 : 795 - 807
  • [24] Engineering Saccharomyces cerevisiae for improving itaconic acid production
    Xu, Hao
    Yu, Wenwen
    Zhou, Xuan
    Liu, Jiaheng
    Xu, Xianhao
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Liu, Long
    Lv, Xueqin
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2025, : 611 - 621
  • [25] Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production
    Zhang, Xue
    Liu, Xue
    Meng, Yonghui
    Zhang, Lijuan
    Qiao, Jianjun
    Zhao, Guang-Rong
    BIOCHEMICAL ENGINEERING JOURNAL, 2021, 176
  • [26] Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    Generoso, Wesley Cardoso
    Schadeweg, Virginia
    Oreb, Mislav
    Boles, Eckhard
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 33 : 1 - 7
  • [27] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    Frontiers in Bioengineering and Biotechnology, 2020, 8
  • [28] Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production
    Babaei, Mahsa
    Zamfir, Gheorghe M. Borja
    Chen, Xiao
    Christensen, Hanne Bjerre
    Kristensen, Mette
    Nielsen, Jens
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1978 - 1988
  • [29] Multiple metabolic engineering of Saccharomyces cerevisiae for the production of lycopene
    Liu, Jiaheng
    Song, Minxia
    Xu, Xianhao
    Wu, Yaokang
    Liu, Yanfeng
    Du, Guocheng
    Li, Jianghua
    Liu, Long
    Lv, Xueqin
    FOOD BIOENGINEERING, 2024,
  • [30] Metabolic engineering of Saccharomyces cerevisiae for the production of isoprenoids.
    Paradise, EM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U222 - U222