Numerical Analysis of Modulated Metasurface Antennas using Fourier-Bessel Basis Functions

被引:0
|
作者
Bodehou, Modeste [1 ]
Gonzalez-Ovejero, David [2 ]
Craeye, Christophe [1 ]
Huynen, Isabelle [1 ]
机构
[1] Catholic Univ Louvain, ICTEAM Inst, Pl Levant 3, B-1348 Louvain La Neuve, Belgium
[2] Inst Elect & Telecommun Rennes, UMR CNRS 6164, F-35042 Rennes, France
来源
2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION FOR RF, MICROWAVE, AND TERAHERTZ APPLICATIONS (NEMO) | 2017年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metasurfaces are thin (21)) metamaterials designed for manipulating the dispersion properties of surface-waves (SWs) or the reflection properties of incident plane-waves. Thanks to the sub-wavelength sizes of the patches used in the implementation step, these surfaces can be described by a surface impedance boundary condition (IBC). In this paper, we investigate a "Method of Moments" (MoM) based analysis of such surface with a family of entire-domain basis functions named "Fourier-Bessel" functions. The orthogonality property of these functions on a disk allows us to represent any smooth current distribution in an effective manner and thereby to drastically reduce the size of the MoM matrix.
引用
收藏
页码:158 / 160
页数:3
相关论文
共 50 条
  • [1] Fourier-Bessel Basis Functions for the Analysis of Elliptical Domain Metasurface Antennas
    Bodehou, Modeste
    Craeye, Christophe
    Bui-Van, Ha
    Huynen, Isabelle
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (04): : 675 - 678
  • [2] Gaussian Ring Basis Functions for the Analysis of Modulated Metasurface Antennas
    Gonzalez-Ovejero, David
    Maci, Stefano
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (09) : 3982 - 3993
  • [3] Factorization of products of discontinuous functions applied to Fourier-Bessel basis
    Popov, E
    Nevière, M
    Bonod, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (01) : 46 - 52
  • [4] NUMERICAL EVALUATION OF FOURIER AND FOURIER-BESSEL TRANSFORMS
    MANDEL, F
    BEARMAN, RJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (03) : 637 - &
  • [5] Galaxy bispectrum in the spherical Fourier-Bessel basis
    Benabou, Joshua N.
    Testa, Adriano
    Heinrich, Chen
    Gebhardt, Henry S. Grasshorn
    Dore, Olivier
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [6] Estimates for the Fourier-Bessel transforms of multivariate functions
    V. A. Abilov
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 836 - 845
  • [7] Estimates for the Fourier-Bessel transforms of multivariate functions
    Abilov, V. A.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (06) : 836 - 845
  • [8] A Method to Analyze Plasma Images Using Modified Fourier-Bessel Functions
    Nishimura, Yuki
    Fujisawa, Akihide
    Nagashima, Yoshihiko
    Moon, Chanho
    Nishizawa, Takashi
    Kobayashi, Tatsuya
    Shimizu, Akihiro
    Tokuzawa, Tokihiko
    Ido, Takeshi
    Nishimura, Daiki
    Kobayashi, Taiki
    PLASMA AND FUSION RESEARCH, 2024, 19
  • [9] A Method to Analyze Plasma Images Using Modified Fourier-Bessel Functions
    NISHIMURA Y.
    FUJISAWA A.
    NAGASHIMA Y.
    MOON C.
    NISHIZAWA T.
    KOBAYASHI T.
    SHIMIZU A.
    TOKUZAWA T.
    IDO T.
    NISHIMURA D.
    KOBAYASHI T.
    Plasma and Fusion Research, 2024, 19 : 1201014 - 1
  • [10] Anisotropic resonator analysis using the Fourier-Bessel mode solver
    Gauthier, Robert C.
    OPTICS COMMUNICATIONS, 2018, 410 : 317 - 327