Factorization of products of discontinuous functions applied to Fourier-Bessel basis

被引:17
|
作者
Popov, E [1 ]
Nevière, M [1 ]
Bonod, N [1 ]
机构
[1] Fac Sci & Tech St Jerome, UMR 6133, Inst Fresnel, F-13397 Marseille 20, France
关键词
D O I
10.1364/JOSAA.21.000046
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The factorization rules of Li [J. Opt. Soc. Am. A 13, 1870 (1996)] are generalized to a cylindrical geometry requiring the use of a Bessel function basis. A theoretical study confirms the validity of the Laurent rule when a product of two continuous functions or of one continuous and one discontinuous function is factorized. The necessity of applying the so-called inverse rule in factorizing a continuous product of two discontinuous functions in a truncated basis is demonstrated theoretically and numerically. (C) 2004 Optical Society of America
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [1] Fourier-Bessel Basis Functions for the Analysis of Elliptical Domain Metasurface Antennas
    Bodehou, Modeste
    Craeye, Christophe
    Bui-Van, Ha
    Huynen, Isabelle
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (04): : 675 - 678
  • [2] Galaxy bispectrum in the spherical Fourier-Bessel basis
    Benabou, Joshua N.
    Testa, Adriano
    Heinrich, Chen
    Gebhardt, Henry S. Grasshorn
    Dore, Olivier
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [3] Numerical Analysis of Modulated Metasurface Antennas using Fourier-Bessel Basis Functions
    Bodehou, Modeste
    Gonzalez-Ovejero, David
    Craeye, Christophe
    Huynen, Isabelle
    2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION FOR RF, MICROWAVE, AND TERAHERTZ APPLICATIONS (NEMO), 2017, : 158 - 160
  • [4] Estimates for the Fourier-Bessel transforms of multivariate functions
    V. A. Abilov
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 836 - 845
  • [5] Estimates for the Fourier-Bessel transforms of multivariate functions
    Abilov, V. A.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (06) : 836 - 845
  • [7] On Fourier, Fourier-Bessel and Radon transformations
    Kipriyanov, IA
    Lyakhov, LN
    DOKLADY AKADEMII NAUK, 1998, 360 (02) : 157 - 160
  • [8] Some issues concerning approximations of functions by Fourier-Bessel sums
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 867 - 873
  • [9] AN ALGORITHM FOR THE FOURIER-BESSEL TRANSFORM
    CANDEL, SM
    COMPUTER PHYSICS COMMUNICATIONS, 1981, 23 (04) : 343 - 353
  • [10] Some issues concerning approximations of functions by Fourier-Bessel sums
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (07) : 867 - 873