Localization of solutions to stochastic porous media equations: finite speed of propagation

被引:9
|
作者
Barbu, Viorel [1 ,2 ]
Roeckner, Michael [3 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Octav Mayer Inst, Iasi, Romania
[3] Univ Bielefeld, Bielefeld, Germany
来源
关键词
Wiener process; porous media equation; energy method; stochastic flow; UNIQUENESS; EXISTENCE;
D O I
10.1214/EJP.v17-1768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is proved that the solutions to the slow diffusion stochastic porous media equation dX - Delta (vertical bar X vertical bar(m-1) X)dt = sigma(X)dW(t), 1 < m <= 5, in O subset of R-d, d = 1, 2, 3, have the property of finite speed of propagation of disturbances for P-a.s. omega is an element of Omega on a sufficiently small time interval (0, t (omega))
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] ON EVOLUTION EQUATIONS WITH FINITE PROPAGATION SPEED
    MIZOHATA, S
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (03): : 258 - &
  • [22] EVOLUTION EQUATIONS WITH FINITE PROPAGATION SPEED
    MIZOHATA, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (1-2) : 173 - 187
  • [23] Stochastic Porous Media Equations Introduction
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. STOCHASTIC POROUS MEDIA EQUATIONS, 2016, 2163 : 1 - 18
  • [24] Stochastic Porous Media Equations Preface
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. STOCHASTIC POROUS MEDIA EQUATIONS, 2016, 2163 : V - +
  • [25] Stochastic porous media equations in Rd
    Barbu, Viorel
    Roeckner, Michael
    Russo, Francesco
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (04): : 1024 - 1052
  • [26] The Stochastic Porous Media Equations in Rd
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. STOCHASTIC POROUS MEDIA EQUATIONS, 2016, 2163 : 133 - 165
  • [27] FINITE SPEED OF PROPAGATION AND WAITING TIMES FOR THE STOCHASTIC POROUS MEDIUM EQUATION: A UNIFYING APPROACH
    Fischer, Julian
    Gruen, Guenther
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 825 - 854
  • [29] Strong solutions of stochastic generalized porous media equations:: Existence, uniqueness, and ergodicity
    Da Prato, G
    Röckner, M
    Rozovskii, BL
    Wang, FY
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (02) : 277 - 291
  • [30] NONLOCAL TIME-POROUS MEDIUM EQUATION: WEAK SOLUTIONS AND FINITE SPEED OF PROPAGATION
    Djida, Jean-Daniel
    Nieto, Juan J.
    Area, Ivan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4031 - 4053