PROBABILISTIC LATENT TENSOR FACTORIZATION FRAMEWORK FOR AUDIO MODELING

被引:0
|
作者
Cemgil, Ali Taylan [1 ,2 ]
Simsekli, Umut [1 ]
Subakan, Yusuf Cem [2 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Dept Elect & Elect Engn, TR-34342 Istanbul, Turkey
关键词
Audio Modeling; Probabilistic Latent Tensor Factorization; Factor graphs; Statistical Inference; Message Passing; NONNEGATIVE MATRIX FACTORIZATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper introduces probabilistic latent tensor factorization (PLTF) as a general framework for hierarchical modeling of audio. This framework combines practical aspects of graphical modeling of machine learning with tensor factorization models. Once a model is constructed in the PLTF framework, the estimation algorithm is immediately available. We illustrate our approach using several popular models such as NMF or NMF2D and provide extensions with simulation results on real data for key audio processing tasks such as restoration and source separation.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 50 条
  • [31] An initialization method for the latent vectors in probabilistic matrix factorization for sparse datasets
    Ar, Yilmaz
    [J]. EVOLUTIONARY INTELLIGENCE, 2020, 13 (02) : 269 - 281
  • [32] An initialization method for the latent vectors in probabilistic matrix factorization for sparse datasets
    Yilmaz Ar
    [J]. Evolutionary Intelligence, 2020, 13 : 269 - 281
  • [33] Modeling the Dynamics of User Preferences in Coupled Tensor Factorization
    Rafailidis, Dimitrios
    Nanopoulos, Alexandros
    [J]. PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), 2014, : 321 - 324
  • [34] Composite Shape Modeling via Latent Space Factorization
    Dubrovina, Anastasia
    Xia, Fei
    Achlioptas, Panos
    Shalah, Mira
    Groscot, Raphael
    Guibas, Leonidas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8139 - 8148
  • [35] FacetCube: a general framework for non-negative tensor factorization
    Chi, Yun
    Zhu, Shenghuo
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 37 (01) : 155 - 179
  • [36] FacetCube: a general framework for non-negative tensor factorization
    Yun Chi
    Shenghuo Zhu
    [J]. Knowledge and Information Systems, 2013, 37 : 155 - 179
  • [37] A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    Liavas, Athanasios P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (19) : 5052 - 5065
  • [38] Multichannel Audio Modeling with Elliptically Stable Tensor Decomposition
    Fontaine, Mathieu
    Stoter, Fabian-Robert
    Liutkus, Antoine
    Simsekli, Umut
    Serizel, Romain
    Badeau, Roland
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 13 - 23
  • [39] Imbalanced low-rank tensor completion via latent matrix factorization
    Qiu, Yuning
    Zhou, Guoxu
    Zeng, Junhua
    Zhao, Qibin
    Xie, Shengli
    [J]. NEURAL NETWORKS, 2022, 155 : 369 - 382
  • [40] Federated Knowledge Graph Completion via Latent Embedding Sharing and Tensor Factorization
    Wang, Maolin
    Zeng, Dun
    Xu, Zenglin
    Gut, Ruocheng
    Zhao, Xiangyu
    [J]. 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1361 - 1366