A Dynamic Hierarchical Genetic-Fuzzy Sugeno Network

被引:0
|
作者
Macmann, Owen [1 ]
Cohen, Kelly [1 ]
机构
[1] Univ Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221 USA
来源
关键词
SYSTEMS; MODEL;
D O I
10.1007/978-3-030-81561-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A class of predictive algorithms that use genetic-fuzzy trees has risen to prominence in recent years. These algorithms are defined by three features: fuzzy logic, cascading decision trees, and genetic optimization. This paper presents an algorithm in this class that uses a cascading tree of Takagi-Sugeno systems, where the structure of the tree and the order of the elements within the tree are calculated procedurally by genetic algorithm. The resulting structure is unlike a tree and more akin to a honeycomb. This algorithm is shown herein to compare favorably with similar classes of predictive algorithms.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [11] A genetic-fuzzy system for optimising agent steering
    Gerdelan, Anton
    O'Sullivan, Carol
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (3-4) : 453 - 461
  • [12] Classifier combination based on genetic-fuzzy system
    School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
    [J]. Beijing Jiaotong Daxue Xuebao, 2007, 2 (1-5): : 1 - 5
  • [13] Genetic-fuzzy approach to model concrete shrinkage
    da Silva, Wilson Ricardo Leal
    Stemberk, Petr
    [J]. COMPUTERS AND CONCRETE, 2013, 12 (02): : 109 - 129
  • [14] A Multi-objective Genetic-Fuzzy Mining Algorithm
    Chen, Chun-Hao
    Hong, Tzung-Pei
    Tseng, Vincent S.
    Chen, Lien-Chin
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 115 - +
  • [15] Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering
    Chun-Hao Chen
    Tzung-Pei Hong
    Vincent S. Tseng
    [J]. Soft Computing, 2011, 15 : 2319 - 2333
  • [16] Applying genetic-fuzzy approach to model polyester dyeing
    Nasiri, Maryarn
    Taheri, S. Mahmoud
    Tarkesh, Hamed
    [J]. ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 608 - +
  • [17] A design of genetic-fuzzy systems using grammatical encoding
    Gil, J
    Hwang, CS
    [J]. COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 104 - 109
  • [18] Genetic-fuzzy model of diesel engine working cycle
    Kekez, M.
    Radziszewski, L.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (04) : 665 - 671
  • [19] Navigation of autonomous robots using a genetic-fuzzy approach
    Department of Computer Science, Coastal Carolina University, Conway, SC, United States
    [J]. WSEAS Trans. Syst, 2006, 2 (353-359):
  • [20] A Multiple-Level Genetic-Fuzzy Mining Algorithm
    Chen, Chun-Hao
    Hong, Tzung-Pei
    Lee, Yeong-Chyi
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 278 - 282