Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography

被引:27
|
作者
Rice, Katherine P. [1 ]
Chen, Yimeng [1 ]
Prosa, Ty J. [1 ]
Larson, David J. [1 ]
机构
[1] CAMECA Instruments Inc, 5500 Nobel Dr, Madison, WI 53711 USA
关键词
atom probe tomography; transmission EBSD; TKD; FIB; grain boundary analysis; FOCUSED ION-BEAM; GRAIN-BOUNDARY SEGREGATION; SPECIMEN PREPARATION; MICROSCOPE; BORON; EBSD;
D O I
10.1017/S1431927616011296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50 degrees misorientation and trace element segregation to the grain boundary.
引用
收藏
页码:583 / 588
页数:6
相关论文
共 50 条
  • [21] A study of threshold switching of NbO2 using atom probe tomography and transmission electron microscopy
    Lee, J. H.
    Cha, E. J.
    Kim, Y. T.
    Chae, B. K.
    Kim, J. J.
    Lee, S. Y.
    Hwang, H. S.
    Park, C. G.
    MICRON, 2015, 79 : 101 - 109
  • [22] Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography
    Herbig, M.
    Choi, P.
    Raabe, D.
    ULTRAMICROSCOPY, 2015, 153 : 32 - 39
  • [23] Copper diffusion into single-crystalline TiN studied by transmission electron microscopy and atom probe tomography
    Muehlbacher, M.
    Mendez-Martin, F.
    Sartory, B.
    Schalk, N.
    Keckes, J.
    Lu, J.
    Hultman, L.
    Mitterer, C.
    THIN SOLID FILMS, 2015, 574 : 103 - 109
  • [24] Integrative Atom Probe Tomography Using Scanning Transmission Electron Microscopy-Centric Atom Placement as a Step Toward Atomic-Scale Tomography
    Ceguerra, Anna, V
    Breen, Andrew J.
    Cairney, Julie M.
    Ringer, Simon P.
    Gorman, Brian P.
    MICROSCOPY AND MICROANALYSIS, 2021, 27 (01) : 140 - 148
  • [25] Advances in electron backscatter diffraction
    Randle, Valerie
    MATERIALS SCIENCE AND TECHNOLOGY, 2006, 22 (11) : 1261 - 1261
  • [26] Electron BackScatter diffraction method
    Suzuki S.
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2016, 85 (08): : 736 - 739
  • [27] Electron backscatter diffraction and cracking
    Gourgues, AF
    MATERIALS SCIENCE AND TECHNOLOGY, 2002, 18 (02) : 119 - 133
  • [28] Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data
    Breen, Andrew J.
    Babinsky, Katharina
    Day, Alec C.
    Eder, K.
    Oakman, Connor J.
    Trimby, Patrick W.
    Primig, Sophie
    Cairney, Julie M.
    Ringer, Simon P.
    MICROSCOPY AND MICROANALYSIS, 2017, 23 (02) : 279 - 290
  • [29] Applications of electron backscatter diffraction
    Randle, Valerie
    MATERIALS SCIENCE AND TECHNOLOGY, 2010, 26 (06) : 633 - 634
  • [30] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469