Decoupling of Modes for the Elastic Wave Equation in Media of Limited Smoothness

被引:8
|
作者
Brytik, Valeriy [2 ,3 ]
de Hoop, Maarten V. [2 ,3 ]
Smith, Hart F. [1 ]
Uhlmann, Gunther [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Purdue Univ, Ctr Computat & Appl Mathememat, W Lafayette, IN 47907 USA
[3] Purdue Univ, Geomath Imaging Grp, W Lafayette, IN 47907 USA
关键词
Diagonalization; Elastic waves; Mode decoupling; Smoothness; SINGULARITIES; SYSTEMS;
D O I
10.1080/03605302.2011.558554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a decoupling result for the P and S waves of linear, isotropic elasticity, in the setting of twice-differentiable Lame parameters. Precisely, we show that the P <-> S components of the wave propagation operator are regularizing of order one on L-2 data, by establishing the diagonalization of the elastic system modulo a L-2-bounded operator. Effecting the diagonalization in the setting of twice-differentiable coefficients depends upon the symbol of the conjugation operator having a particular structure.
引用
收藏
页码:1683 / 1693
页数:11
相关论文
共 50 条
  • [31] Pointwise convergence for the elastic wave equation
    Chu-Hee Cho
    Seongyeon Kim
    Yehyun Kwon
    Ihyeok Seo
    Archiv der Mathematik, 2022, 119 : 303 - 310
  • [32] Elastic wave-equation datuming
    Gong, Xufei
    Du, Qizhen
    Zhao, Qiang
    Sun, Pengyuan
    Zhang, Jianlei
    Tian, Zhenping
    GEOPHYSICS, 2018, 83 (05) : U51 - U61
  • [33] On a fractional Zener elastic wave equation
    Sven Peter Näsholm
    Sverre Holm
    Fractional Calculus and Applied Analysis, 2013, 16 : 26 - 50
  • [34] WAVE EQUATION FOR FINITE ELASTIC STRAINS
    NADAI, A
    JOURNAL OF APPLIED PHYSICS, 1945, 16 (05) : 313 - 313
  • [35] ELASTIC WAVE-EQUATION PARTITIONING
    MARFURT, KJ
    GEOPHYSICS, 1981, 46 (04) : 442 - 443
  • [36] On a fractional Zener elastic wave equation
    Nasholm, Sven Peter
    Holm, Sverre
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 26 - 50
  • [37] Pointwise convergence for the elastic wave equation
    Cho, Chu-Hee
    Kim, Seongyeon
    Kwon, Yehyun
    Seo, Ihyeok
    ARCHIV DER MATHEMATIK, 2022, 119 (03) : 303 - 310
  • [38] WHISPERING GALLERY WAVE MODES ON ELASTIC CYLINDERS
    DICKEY, JW
    FRISK, GV
    UBERALL, H
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 59 (06): : 1339 - 1346
  • [39] SURFACE-WAVE MODES ON ELASTIC CYLINDERS
    FRISK, GV
    DICKEY, JW
    UBERALL, H
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 58 (05): : 996 - 1008
  • [40] Wave Modes of An Elastic Tube Conveying Blood
    Lin, Shueei-Muh
    Lee, Sen-Yung
    Tsai, Cheng-Chuan
    Chen, Chien-Wi
    Wang, Wen-Rong
    Lee, Jenn-Fa
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 34 (01): : 33 - 53