Conformal Killing forms on nearly Kahler manifolds

被引:2
|
作者
Naveira, Antonio M. [1 ]
Semmelmann, Uwe [2 ]
机构
[1] Univ Valencia EG, Fac Ciencias Matemat, Dept Matemat, Av Vicente Andres Estelles 1, Valencia 46100, Spain
[2] Univ Stuttgart, Fachbereich Math, Inst Geometrie & Topol, Pfaffenwaldring 57, Stuttgart 70569, Germany
关键词
Conformal Killing forms; Nearly Kahler manifolds; 2-FORMS;
D O I
10.1016/j.difgeo.2020.101628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conformal Killing forms on compact 6-dimensional nearly Kahler manifolds. Our main result concerns forms of degree 3. Here we give a classification showing that all conformal Killing 3-forms are linear combinations of d omega and its Hodge dual *d omega, where omega is the fundamental 2-form of the nearly Kahler structure. The proof is based on a fundamental integrability condition for conformal Killing forms. We have partial results in the case of conformal Killing 2-forms. In particular we show the non-existence of J-anti-invariant Killing 2-forms. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条