A critical case for Brownian slow points

被引:3
|
作者
Bass, RF
Burdzy, K
机构
[1] Department of Mathematics, University of Washington, Seattle
关键词
D O I
10.1007/BF01192072
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X(t) be a Brownian motion and let S(c) be the set of reals r greater than or equal to 0 such that \X(r+l)-X(r)\ less than or equal to c root t, 0 less than or equal to t less than or equal to h, for some h = h(r) > 0. It is known that S(c) is empty if c < 1 and nonempty if c > 1, a.s. In this paper we prove that S(1) is empty a.s.
引用
收藏
页码:85 / 108
页数:24
相关论文
共 50 条
  • [22] BROWNIAN-MOTION AT A SLOW POINT
    BARLOW, MT
    PERKINS, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (02) : 741 - 775
  • [23] The fixed points of branching Brownian motion
    Chen, Xinxin
    Garban, Christophe
    Shekhar, Atul
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (3-4) : 839 - 884
  • [25] Minkowski content of Brownian cut points
    Holden, Nina
    Lawler, Gregory F.
    Li, Xinyi
    Sun, Xin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01): : 455 - 488
  • [26] ON BROWNIAN PATHS CONNECTING BOUNDARY POINTS
    BURDZY, K
    ANNALS OF PROBABILITY, 1988, 16 (03): : 1034 - 1038
  • [27] The fixed points of branching Brownian motion
    Xinxin Chen
    Christophe Garban
    Atul Shekhar
    Probability Theory and Related Fields, 2023, 185 : 839 - 884
  • [28] GROW UP AND SLOW DECAY IN THE CRITICAL SOBOLEV CASE
    Fila, Marek
    King, John R.
    NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) : 661 - 671
  • [29] Fixed points of the multivariate smoothing transform: the critical case
    Kolesko, Konrad
    Mentemeier, Sebastian
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 24
  • [30] Slow points and fast points of local times
    Marsalle, L
    ANNALS OF PROBABILITY, 1999, 27 (01): : 150 - 165