A critical case for Brownian slow points

被引:3
|
作者
Bass, RF
Burdzy, K
机构
[1] Department of Mathematics, University of Washington, Seattle
关键词
D O I
10.1007/BF01192072
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X(t) be a Brownian motion and let S(c) be the set of reals r greater than or equal to 0 such that \X(r+l)-X(r)\ less than or equal to c root t, 0 less than or equal to t less than or equal to h, for some h = h(r) > 0. It is known that S(c) is empty if c < 1 and nonempty if c > 1, a.s. In this paper we prove that S(1) is empty a.s.
引用
收藏
页码:85 / 108
页数:24
相关论文
共 50 条
  • [1] A critical case for Brownian slow points
    Probab Theory Relat Fields, 1 (85):
  • [2] BROWNIAN SLOW POINTS - THE CRITICAL CASE
    DAVIS, B
    PERKINS, E
    ANNALS OF PROBABILITY, 1985, 13 (03): : 779 - 803
  • [3] ON THE HAUSDORFF DIMENSION OF THE BROWNIAN SLOW POINTS
    PERKINS, E
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (03): : 369 - 399
  • [4] CONE POINTS OF PLANAR BROWNIAN-MOTION - CRITICAL CASE
    LEGALL, JF
    MEYRE, T
    PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (02) : 231 - 247
  • [5] ZEROS AND SLOW POINTS OF BROWNIAN-MOTION
    KAHANE, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (08): : 431 - 433
  • [6] BROWNIAN LOCAL TIME ON SQUARE ROOT BOUNDARIES AND SLOW POINTS OF THE BROWNIAN PATH
    PERKINS, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 16 (01) : 9 - 9
  • [7] SLOW POINTS IN THE SUPPORT OF HISTORICAL BROWNIAN-MOTION
    VERZANI, J
    ANNALS OF PROBABILITY, 1995, 23 (01): : 56 - 70
  • [8] MULTIPLE POINTS OF THE BROWNIAN SHEET IN CRITICAL DIMENSIONS
    Dalang, Robert C.
    Mueller, Carl
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1577 - 1593
  • [9] CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS
    Dalang, Robert C.
    Khoshnevisan, Davar
    Nualart, Eulalia
    Wu, Dongsheng
    Xiao, Yimin
    ANNALS OF PROBABILITY, 2012, 40 (04): : 1829 - 1859
  • [10] Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions
    Esser, Celine
    Loosveldt, Laurent
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 : 1471 - 1495