Ion acceleration with ultrafast laser driven water droplets

被引:33
|
作者
Schnürer, M [1 ]
Ter-Avetisyan, S [1 ]
Busch, S [1 ]
Risse, E [1 ]
Kalachnikov, MP [1 ]
Sandner, W [1 ]
Nickles, P [1 ]
机构
[1] Max Born Inst, D-12489 Berlin, Germany
关键词
ion acceleration; laser plasma; laser-plasma dynamics;
D O I
10.1017/S0263034605050482
中图分类号
O59 [应用物理学];
学科分类号
摘要
Small water droplets (20 micron in diameter) have been exposed to intense (similar to 10(19) W/cm(2)) laser pulses in order to study ultrashort (similar to 35 fs) laser pulse driven ion acceleration. Ion emission spectra registered simultaneously in forward and backward direction in respect to the incident laser beam carry similar integral ion energy but show different ion cutoff energies. With simple model estimations on basis of the confined and spherical geometry of the droplet-target, we inferred acceleration field strengths of about (0.7-2) MV/mu m. Up to 9% of the incident laser energy is converted to kinetic energy of ions, which have been accelerated to energies above 100 keV and up to 1.5 MeV. A laser pedestal at an intensity of about 10(-7) of the peak intensity at 1-2 ns in front of the pulse peak still limits the achievable cutoff energies of emitted protons from the droplet. The observed increase of cutoff energies with an enhanced temporal contrast of the laser pulse is elucidated within a simple acceleration model.
引用
收藏
页码:337 / 343
页数:7
相关论文
共 50 条
  • [11] Directional Laser-Driven Ion Acceleration from Microspheres
    Sokollik, T.
    Schnuerer, M.
    Steinke, S.
    Nickles, P. V.
    Sandner, W.
    Amin, M.
    Toncian, T.
    Willi, O.
    Andreev, A. A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (13)
  • [12] Reaching high flux in laser-driven ion acceleration
    Felix Mackenroth
    Arkady Gonoskov
    Mattias Marklund
    [J]. The European Physical Journal D, 2017, 71
  • [13] The impact of contaminants on laser-driven light ion acceleration
    Petrov, G. M.
    Willingale, L.
    Davis, J.
    Petrova, Tz.
    Maksimchuk, A.
    Krushelnick, K.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (10)
  • [14] Novel Spectrometer Designs for Laser-Driven Ion Acceleration
    Morabito, Antonia
    Nelissen, Kwinten
    Migliorati, Mauro
    Ter-Avetisyan, Sargis
    [J]. PHOTONICS, 2024, 11 (07)
  • [15] Ion acceleration from laser-driven electrostatic shocks
    Fiuza, F.
    Stockem, A.
    Boella, E.
    Fonseca, R. A.
    Silva, L. O.
    Haberberger, D.
    Tochitsky, S.
    Mori, W. B.
    Joshi, C.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (05)
  • [16] Bubble regime for ion acceleration in a laser-driven plasma
    Shen, Baifei
    Li, Yuelin
    Yu, M. Y.
    Cary, John
    [J]. PHYSICAL REVIEW E, 2007, 76 (05):
  • [17] Laser-driven ion acceleration: methods, challenges and prospects
    Badziak, J.
    [J]. INTERNATIONAL CONFERENCES ON RESEARCH AND APPLICATIONS OF PLASMAS (PLASMA-2017), 2018, 959
  • [18] Role of resistivity gradient in laser-driven ion acceleration
    Gizzi, L. A.
    Betti, S.
    Foerster, E.
    Giulietti, D.
    Hoefer, S.
    Koester, P.
    Labate, L.
    Loetzsch, R.
    Robinson, A. P. L.
    Uschmann, I.
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (01):
  • [19] Laser-driven Helium Ion Acceleration for Hadron Therapy
    Bulanov, S. S.
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    Bulanov, S. V.
    Margarone, D.
    Korn, G.
    Haberer, T.
    [J]. ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777
  • [20] Modeling laser-driven ion acceleration with deep learning
    Djordjevic, B. Z.
    Kemp, A. J.
    Kim, J.
    Simpson, R. A.
    Wilks, S. C.
    Ma, T.
    Mariscal, D. A.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (04)